Changes for page 08 Function parameter details
Last modified by Theodore Xu on 2025/02/21 14:13
From version 4.1
edited by Jim(Forgotten)
on 2022/12/13 15:55
on 2022/12/13 15:55
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -8 Function parameter details 1 +08 Function parameter details - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Jim1 +XWiki.Mora - Content
-
... ... @@ -1,4 +1,4 @@ 1 -= 1F0 group basic parameters =1 += F0 group basic parameters = 2 2 3 3 (% class="table-bordered" %) 4 4 |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0 ... ... @@ -13,7 +13,10 @@ 13 13 14 14 It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps. 15 15 16 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it 16 +(% class="box infomessage" %) 17 +((( 18 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it. 19 +))) 17 17 18 18 (% class="table-bordered" %) 19 19 |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0 ... ... @@ -44,7 +44,7 @@ 44 44 45 45 This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. . 46 46 47 -(% class="table-bordered" %) 50 +(% class="table-bordered" style="width:1474px" %) 48 48 |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1 49 49 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure) 50 50 |1|(% colspan="2" %)Digital setting (retentive at power failure) ... ... @@ -51,7 +51,7 @@ 51 51 |2|(% colspan="2" %)AI1 52 52 |3|(% colspan="2" %)AI2 53 53 |4|(% colspan="2" %)Reserved 54 -|5|(% colspan="2" %)Reserved 57 +|5|(% colspan="2" %)PULSE setting DI6(Reserved) 55 55 |6|(% colspan="2" %)Multi-stage speed setting 56 56 |7|(% colspan="2" %)Simple PLC 57 57 |8|(% colspan="2" %)PID ... ... @@ -59,13 +59,13 @@ 59 59 60 60 Select the main source of the AC drive’s input frequency. There are 10 main frequency sources: 61 61 62 -0: Digital setting (non-retentive at power failure) 65 +**0:** Digital setting (non-retentive at power failure) 63 63 64 64 The initial value is 0. The frequency can be increased or decreased by the pulse knob, and the set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals). 65 65 66 66 Non-retentive means that after the AC drive is powered off, the set frequency value will be restored to 0; it will be cleared after switching as the frequency source, so this parameter should not be the object of frequency source switching. 67 67 68 -1: Digital setting (retentive at power failure) 71 +**1: **Digital setting (retentive at power failure) 69 69 70 70 The initial value is the value of F0.08 "Keypad setting frequency". 71 71 ... ... @@ -73,27 +73,35 @@ 73 73 74 74 Retentive means that when the AC drive is powered on again after power failure, the set frequency is the value before the last power failure (note that it is used in conjunction with F0.23). 75 75 76 -2: AI1 79 +**2: **AI1 77 77 78 -3: AI2 81 +**3:** AI2 79 79 80 80 Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board. 81 81 82 - 4/5: Reserved85 +**5: **PULSE setting(Reserved) 83 83 84 - 6:Multi-stagespeed87 +The set frequency is given by the terminal pulse. 85 85 89 +Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz. 90 + 91 +{{info}} 92 +**✎**Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__ 93 +{{/info}} 94 + 95 +**6: **Multi-stage speed 96 + 86 86 Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency. 87 87 88 -7: Simple PLC 99 +**7: **Simple PLC 89 89 90 90 Select simple PLC mode. When the frequency source is simple PLC, you need to set the FD group "multi-speed and PLC" parameters to determine the set frequency. 91 91 92 -8: PID 103 +**8: **PID 93 93 94 94 Select process PID control. At this time, you need to set the F9 group "PID function of process control ". The running frequency of the inverter is the frequency value after PID action. For the meaning of PID given source, given amount, feedback source, etc., please refer to the introduction of "PID Function of process control" in F9 group. 95 95 96 -9: Communication setting 107 +**9: **Communication setting 97 97 98 98 Means that the main frequency source is given by the upper machine through communication. 99 99 ... ... @@ -124,8 +124,8 @@ 124 124 125 125 (% class="table-bordered" %) 126 126 |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0 127 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency 128 -|1|(% colspan="2" %)Relative to the frequency source X 138 +|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency 139 +|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X 129 129 |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0 130 130 |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150% 131 131 ... ... @@ -148,13 +148,13 @@ 148 148 149 149 Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y. 150 150 151 -One’s digit:Selection of frequency source 162 +One’s digit: Selection of frequency source 152 152 153 -0: main frequency source X164 +0: Main frequency source X 154 154 155 155 The main frequency X is used as the target frequency. 156 156 157 -1: main and auxiliary calculation results168 +1: Main and auxiliary calculation results 158 158 159 159 The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits). 160 160 ... ... @@ -172,9 +172,9 @@ 172 172 173 173 4: Switchover between Y and main (X) & auxiliary(Y) calculation 174 174 175 -When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.186 +When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency. 176 176 177 -When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.188 +When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency. 178 178 179 179 Ten’s digit:X and Y calculation relationship: 180 180 ... ... @@ -199,30 +199,30 @@ 199 199 The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency. 200 200 201 201 (% class="table-bordered" %) 202 -|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz 203 -|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection) 213 +|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz 214 +|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection) 204 204 205 205 When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter. 206 206 207 -(% class="table-bordered" %) 208 -|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0 209 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction 210 -|1|(% colspan="2" %)Reverse direction 218 +(% class="table-bordered" style="width:1454px" %) 219 +|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0 220 +|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction 221 +|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction 211 211 212 212 By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W). 213 213 214 214 Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged. 215 215 216 -(% class="table-bordered" %) 217 -|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz 218 -|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz 219 -|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0 220 -|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12 221 -|1|(% colspan="2" %)AI1 222 -|2|(% colspan="2" %)AI2 223 -|3|(% colspan="2" %)Reserved 224 -|4|(% colspan="2" %)Reserved 225 -|5|(% colspan="2" %)Communication setting 227 +(% class="table-bordered" style="width:1473px" %) 228 +|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz 229 +|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz 230 +|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0 231 +|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12 232 +|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1 233 +|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2 234 +|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved 235 +|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved 236 +|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting 226 226 227 227 Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12. 228 228 ... ... @@ -229,31 +229,33 @@ 229 229 For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency. 230 230 231 231 (% class="table-bordered" %) 232 -|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz 233 -|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10 234 -|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz 235 -|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10 243 +|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz 244 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10 245 +|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz 246 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10 236 236 237 237 When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value. 238 238 239 239 (% class="table-bordered" %) 240 -|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz 241 -|Setting Range|(% colspan="2" %)0.00Hz~~F0.12 251 +|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz 252 +|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12 242 242 243 243 When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15. 244 244 245 245 (% class="table-bordered" %) 246 -|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0 247 -|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit 248 -|1|(% colspan="2" %)Stop 249 -|2|(% colspan="2" %)Standby(Running at 0 Hz) 257 +|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0 258 +|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit 259 +|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop 260 +|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz) 250 250 251 251 Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop. 252 252 253 253 (% class="table-bordered" %) 254 -|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent 255 -|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz 265 +|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent 266 +|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz 256 256 268 += Carrier Frequency: = 269 + 257 257 This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced. 258 258 259 259 When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases. ... ... @@ -381,7 +381,7 @@ 381 381 382 382 The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20. 383 383 384 -= 2F1 group start & stop control =397 += F1 group start & stop control = 385 385 386 386 (% class="table-bordered" %) 387 387 |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0 ... ... @@ -541,7 +541,7 @@ 541 541 542 542 Setting whether the AC drive has output when running frequency is 0 543 543 544 -= 3F2 group motor parameters =557 += F2 group motor parameters = 545 545 546 546 (% class="table-bordered" %) 547 547 |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0 ... ... @@ -635,7 +635,9 @@ 635 635 636 636 When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0. 637 637 651 +{{info}} 638 638 **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.** 653 +{{/info}} 639 639 640 640 (% class="table-bordered" %) 641 641 |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent ... ... @@ -654,7 +654,7 @@ 654 654 655 655 The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) . 656 656 657 -= 4F3 group vector control parameters =672 += F3 group vector control parameters = 658 658 659 659 F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1. 660 660 ... ... @@ -791,7 +791,7 @@ 791 791 792 792 During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15. 793 793 794 -= 5F4 group v/f control parameters =809 += F4 group v/f control parameters = 795 795 796 796 This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control. 797 797 ... ... @@ -960,7 +960,7 @@ 960 960 961 961 According to the actual use, select the situation where the AVR function is enabled. 962 962 963 -= 6F5 group input terminals =978 += F5 group input terminals = 964 964 965 965 The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals. 966 966 ... ... @@ -1095,18 +1095,27 @@ 1095 1095 1096 1096 0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor. 1097 1097 1113 +[[image:1681697850903-377.png||height="282" width="633"]] 1114 + 1098 1098 1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV. 1099 1099 1100 - 2: Three-linemode 1: This mode Din is the enableterminal, and the direction is controlled by FWD and REV respectively.1117 +[[image:1681697969422-504.png]] 1101 1101 1102 - Butthepulse isvalid,it mustbecompletedbydisconnectingtheDin terminalsignalwhen stopping.1119 +2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively. 1103 1103 1121 +DIN is pulse effective, user need to disconnect the Din terminal signal when stop. 1122 + 1104 1104 Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control". 1105 1105 1125 +[[image:1681698530367-261.png||height="298" width="628"]] 1126 + 1106 1106 3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal. 1107 1107 1108 1108 Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control". 1109 1109 1131 +[[image:1681698557086-403.png||height="267" width="625"]] 1132 + 1133 + 1110 1110 (% class="table-bordered" %) 1111 1111 |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz 1112 1112 |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz ... ... @@ -1151,20 +1151,6 @@ 1151 1151 The function of AI2 is similar to the setting method of AI1. 1152 1152 1153 1153 (% class="table-bordered" %) 1154 -|(% rowspan="2" %)**F5.28**|PULSE INPUT minimum input|Default|0.00kHz 1155 -|Setting range|(% colspan="2" %)0.00kHz~~F5.30 1156 -|(% rowspan="2" %)**F5.29**|Percentage rate of PULSE INPUT minimum input|Default|0.0% 1157 -|Setting range|(% colspan="2" %)-100.00%~~100.0% 1158 -|(% rowspan="2" %)**F5.30**|PULSE INPUT maximum input|Default|50.00kHz 1159 -|Setting range|(% colspan="2" %)F5.28~~50.00kHz 1160 -|(% rowspan="2" %)**F5.31**|Percentage rate of PULSE INPUT maximum input|Default|100.0% 1161 -|Setting range|(% colspan="2" %)-100.00%~~100.0% 1162 -|(% rowspan="2" %)**F5.32**|PULSE INPUT filter time|Default|0.10s 1163 -|Setting range|(% colspan="2" %)0.00s~~10.00s 1164 - 1165 -This group of function codes defines the corresponding relationship when pulse is used as the frequency setting method. Pulse frequency input can only be input through DI6 channel. The application of this group of functions is similar to that of AI1. 1166 - 1167 -(% class="table-bordered" %) 1168 1168 |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s 1169 1169 |Setting range|(% colspan="2" %)0.0s~~3600.0s 1170 1170 |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s ... ... @@ -1202,7 +1202,7 @@ 1202 1202 1203 1203 Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid. 1204 1204 1205 -= 7F6 group output terminals =1215 += F6 group output terminals = 1206 1206 1207 1207 The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals. 1208 1208 ... ... @@ -1456,8 +1456,14 @@ 1456 1456 1457 1457 For the second output, the parameter setting method is the same as F6.28~~F6.32. 1458 1458 1459 -= 8 F7 group keypad display = 1469 +(% class="table-bordered" %) 1470 +|(% rowspan="2" %)**F6.38**|The setting time of timer|Default|0 1471 +|Setting range|(% colspan="3" %)0.00s~~100.0s 1460 1460 1473 +Set the timer setting time 1474 + 1475 += F7 group keypad display = 1476 + 1461 1461 (% class="table-bordered" %) 1462 1462 |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0 1463 1463 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation ... ... @@ -1667,7 +1667,7 @@ 1667 1667 |(% rowspan="2" %)**F7.15**|Performance software version|Default|- 1668 1668 |Setting range|(% colspan="2" %)- 1669 1669 1670 -= 9F8 group auxiliary functions =1686 += F8 group auxiliary functions = 1671 1671 1672 1672 (% class="table-bordered" %) 1673 1673 |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz ... ... @@ -1967,7 +1967,7 @@ 1967 1967 1968 1968 Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10. 1969 1969 1970 -= 10F9 group pid function of process control =1986 += F9 group pid function of process control = 1971 1971 1972 1972 PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows: 1973 1973 ... ... @@ -1974,6 +1974,9 @@ 1974 1974 (% style="text-align:center" %) 1975 1975 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]] 1976 1976 1993 +(% style="text-align:center" %) 1994 +[[image:生产流程图.png]] 1995 + 1977 1977 Figure 6-10-1 Block diagram of process PID principle 1978 1978 1979 1979 (% class="table-bordered" %) ... ... @@ -2169,7 +2169,7 @@ 2169 2169 2170 2170 Figure 6-10-2 PID sleep and wake-up timing diagram 2171 2171 2172 -= 11FA group faults & protection =2191 += FA group faults & protection = 2173 2173 2174 2174 (% class="table-bordered" %) 2175 2175 |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1 ... ... @@ -2293,23 +2293,17 @@ 2293 2293 |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000 2294 2294 |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13) 2295 2295 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13) 2296 -|(% style="width:316px" %)Hundr -eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)2297 -|(% style="width:316px" %)Thous -ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)2315 +|(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13) 2316 +|(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30) 2298 2298 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping 2299 2299 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode 2300 2300 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost 2301 -| |(% style="width:316px" %)Ten thous -ands Place|(% colspan="3" style="width:978px" %)(((2320 +| |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)((( 2302 2302 PID feedback loss during 2303 2303 2304 2304 Running (Err31) (0~~2,as ones place of FA.13) 2305 2305 ))) 2306 -|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)((( 2307 -Overcurrent stall Integral coefficient 2308 -)))|(% colspan="2" style="width:451px" %)Default|500 2309 -|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000 2310 2310 2311 -set overcurrent stall Integral coefficient rate. 2312 - 2313 2313 When “free stop” is selected: the inverter prompts Err~*~* and stops directly. 2314 2314 2315 2315 When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping. ... ... @@ -2317,22 +2317,29 @@ 2317 2317 When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21. 2318 2318 2319 2319 (% class="table-bordered" %) 2320 -|(% rowspan="2" %)((( 2321 -FA.17 2322 -)))|((( 2323 -Undervoltage setting 2324 -)))|((( 2333 +|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)((( 2334 +Overcurrent stall Integral coefficient 2335 +)))|(% colspan="2" style="width:451px" %)Default|500 2336 +|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000 2337 + 2338 +Set overcurrent stall Integral coefficient rate. 2339 + 2340 +(% class="table-bordered" %) 2341 +|(% rowspan="3" %)((( 2342 +**FA.17** 2343 +)))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |((( 2325 2325 Default 2326 2326 )))|((( 2327 - 100.0%2346 +0 2328 2328 ))) 2329 -|((( 2348 +|(% colspan="1" rowspan="2" %)((( 2330 2330 Setting range 2331 -)))|(% colspan="2" rowspan="1" %)((( 2332 - 60.0%~~140.0%2350 +)))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)((( 2351 +General machine instant stop/no-stop 2333 2333 ))) 2353 +|1|(% colspan="2" %)Spinning machine instant stop/no-stop 2334 2334 2335 - Instantaneouspowerfailuremodeselection2355 +Set the mode of instant stop and no-stop. 2336 2336 2337 2337 (% class="table-bordered" %) 2338 2338 |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0% ... ... @@ -2403,7 +2403,7 @@ 2403 2403 2404 2404 Note: The function code display data is H.xxx, where H. means hexadecimal data. 2405 2405 2406 -= 12FB group frequency swing, length fixing and counting =2426 += FB group frequency swing, length fixing and counting = 2407 2407 2408 2408 The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions. 2409 2409 ... ... @@ -2490,7 +2490,7 @@ 2490 2490 2491 2491 Figure 6-12-2 Schematic diagram of set count value given and designated count value given 2492 2492 2493 -= 13FC group communication parameters =2513 += FC group communication parameters = 2494 2494 2495 2495 (% class="table-bordered" %) 2496 2496 |(% rowspan="2" %)**FC.00**|Local address|Default|1 ... ... @@ -2541,7 +2541,7 @@ 2541 2541 2542 2542 Used to determine the output unit of the current value when the communication reads the output current. 2543 2543 2544 -= 14FD group muti-stage speed and simple plc functions =2564 += FD group muti-stage speed and simple plc functions = 2545 2545 2546 2546 The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics. 2547 2547 ... ... @@ -2700,7 +2700,7 @@ 2700 2700 2701 2701 This parameter determines the target quantity given channel of multi-speed 0. 2702 2702 2703 -= 15FE group user password management =2723 += FE group user password management = 2704 2704 2705 2705 (% class="table-bordered" %) 2706 2706 |(% rowspan="2" %)**FE.00**|User password|Default|0
- 1681697850903-377.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.5 KB - Content
- 1681697969422-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.9 KB - Content
- 1681698530367-261.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.0 KB - Content
- 1681698557086-403.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content
- 生产流程图.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.AiXia - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.0 MB - Content