Last modified by Theodore Xu on 2025/02/21 14:13

From version 5.1
edited by Jim(Forgotten)
on 2023/04/13 09:47
Change comment: There is no comment for this version
To version 19.1
edited by Mora Zhou
on 2023/12/21 15:07
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -8 Function parameter details
1 +08 Function parameter details
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Jim
1 +XWiki.Mora
Content
... ... @@ -1,4 +1,4 @@
1 -= 1 F0 group basic parameters =
1 += F0 group basic parameters =
2 2  
3 3  (% class="table-bordered" %)
4 4  |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
... ... @@ -13,7 +13,10 @@
13 13  
14 14  It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15 15  
16 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
16 +(% class="box infomessage" %)
17 +(((
18 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it.
19 +)))
17 17  
18 18  (% class="table-bordered" %)
19 19  |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
... ... @@ -44,7 +44,7 @@
44 44  
45 45  This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
46 46  
47 -(% class="table-bordered" %)
50 +(% class="table-bordered" style="width:1474px" %)
48 48  |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
49 49  |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
50 50  |1|(% colspan="2" %)Digital setting (retentive at power failure)
... ... @@ -51,7 +51,7 @@
51 51  |2|(% colspan="2" %)AI1
52 52  |3|(% colspan="2" %)AI2
53 53  |4|(% colspan="2" %)Reserved
54 -|5|(% colspan="2" %)Reserved
57 +|5|(% colspan="2" %)PULSE setting DI6(Reserved
55 55  |6|(% colspan="2" %)Multi-stage speed setting
56 56  |7|(% colspan="2" %)Simple PLC
57 57  |8|(% colspan="2" %)PID
... ... @@ -79,13 +79,15 @@
79 79  
80 80  Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
81 81  
82 -**4/5: **PULSE setting(Reserved)
85 +**5: **PULSE setting(Reserved)
83 83  
84 84  The set frequency is given by the terminal pulse.
85 85  
86 86  Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz.
87 87  
88 -Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
91 +{{info}}
92 +**✎**Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
93 +{{/info}}
89 89  
90 90  **6: **Multi-stage speed
91 91  
... ... @@ -130,8 +130,8 @@
130 130  
131 131  (% class="table-bordered" %)
132 132  |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
133 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
134 -|1|(% colspan="2" %)Relative to the frequency source X
138 +|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency
139 +|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X
135 135  |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
136 136  |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
137 137  
... ... @@ -154,13 +154,13 @@
154 154  
155 155  Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
156 156  
157 -One’s digit:Selection of frequency source
162 +One’s digit: Selection of frequency source
158 158  
159 -0:main frequency source X
164 +0: Main frequency source X
160 160  
161 161  The main frequency X is used as the target frequency.
162 162  
163 -1: main and auxiliary calculation results
168 +1: Main and auxiliary calculation results
164 164  
165 165  The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
166 166  
... ... @@ -178,9 +178,9 @@
178 178  
179 179  4: Switchover between Y and main (X) & auxiliary(Y) calculation
180 180  
181 -When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
186 +When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
182 182  
183 -When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
188 +When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
184 184  
185 185  Ten’s digit:X and Y calculation relationship:
186 186  
... ... @@ -205,30 +205,30 @@
205 205  The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
206 206  
207 207  (% class="table-bordered" %)
208 -|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
209 -|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
213 +|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz
214 +|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
210 210  
211 211  When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
212 212  
213 -(% class="table-bordered" %)
214 -|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
215 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
216 -|1|(% colspan="2" %)Reverse direction
218 +(% class="table-bordered" style="width:1454px" %)
219 +|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0
220 +|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction
221 +|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction
217 217  
218 218  By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
219 219  
220 220  Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
221 221  
222 -(% class="table-bordered" %)
223 -|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
224 -|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
225 -|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
226 -|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
227 -|1|(% colspan="2" %)AI1
228 -|2|(% colspan="2" %)AI2
229 -|3|(% colspan="2" %)Reserved
230 -|4|(% colspan="2" %)Reserved
231 -|5|(% colspan="2" %)Communication setting
227 +(% class="table-bordered" style="width:1473px" %)
228 +|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz
229 +|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz
230 +|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0
231 +|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12
232 +|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1
233 +|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2
234 +|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved
235 +|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved
236 +|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting
232 232  
233 233  Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
234 234  
... ... @@ -235,31 +235,33 @@
235 235  For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
236 236  
237 237  (% class="table-bordered" %)
238 -|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
239 -|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
240 -|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
241 -|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
243 +|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz
244 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10
245 +|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz
246 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10
242 242  
243 243  When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
244 244  
245 245  (% class="table-bordered" %)
246 -|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
247 -|Setting Range|(% colspan="2" %)0.00Hz~~F0.12
251 +|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz
252 +|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12
248 248  
249 249  When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
250 250  
251 251  (% class="table-bordered" %)
252 -|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
253 -|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
254 -|1|(% colspan="2" %)Stop
255 -|2|(% colspan="2" %)Standby(Running at 0 Hz)
257 +|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0
258 +|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit
259 +|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop
260 +|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz)
256 256  
257 257  Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
258 258  
259 259  (% class="table-bordered" %)
260 -|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
261 -|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
265 +|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent
266 +|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz
262 262  
268 += Carrier Frequency: =
269 +
263 263  This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
264 264  
265 265  When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
... ... @@ -387,7 +387,7 @@
387 387  
388 388  The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
389 389  
390 -= 2 F1 group start & stop control =
397 += F1 group start & stop control =
391 391  
392 392  (% class="table-bordered" %)
393 393  |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
... ... @@ -547,7 +547,7 @@
547 547  
548 548  Setting whether the AC drive has output when running frequency is 0
549 549  
550 -= 3 F2 group motor parameters =
557 += F2 group motor parameters =
551 551  
552 552  (% class="table-bordered" %)
553 553  |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
... ... @@ -641,7 +641,9 @@
641 641  
642 642  When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
643 643  
651 +{{info}}
644 644  **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
653 +{{/info}}
645 645  
646 646  (% class="table-bordered" %)
647 647  |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
... ... @@ -660,7 +660,7 @@
660 660  
661 661  The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
662 662  
663 -= 4 F3 group vector control parameters =
672 += F3 group vector control parameters =
664 664  
665 665  F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
666 666  
... ... @@ -797,7 +797,7 @@
797 797  
798 798  During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
799 799  
800 -= 5 F4 group v/f control parameters =
809 += F4 group v/f control parameters =
801 801  
802 802  This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
803 803  
... ... @@ -966,7 +966,7 @@
966 966  
967 967  According to the actual use, select the situation where the AVR function is enabled.
968 968  
969 -= 6 F5 group input terminals =
978 += F5 group input terminals =
970 970  
971 971  The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
972 972  
... ... @@ -1101,18 +1101,27 @@
1101 1101  
1102 1102  0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1103 1103  
1113 +[[image:1681697850903-377.png||height="282" width="633"]]
1114 +
1104 1104  1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV.
1105 1105  
1106 -2: Three-line mode 1: This mode Din is the enable terminal, and the direction is controlled by FWD and REV respectively.
1117 +[[image:1681697969422-504.png]]
1107 1107  
1108 -But the pulse is valid, it must be completed by disconnecting the Din terminal signal when stopping.
1119 +2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively.
1109 1109  
1121 +DIN is pulse effective, user need to disconnect the Din terminal signal when stop.
1122 +
1110 1110  Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1111 1111  
1125 +[[image:1681698530367-261.png||height="298" width="628"]]
1126 +
1112 1112  3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1113 1113  
1114 1114  Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1115 1115  
1131 +[[image:1681698557086-403.png||height="267" width="625"]]
1132 +
1133 +
1116 1116  (% class="table-bordered" %)
1117 1117  |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1118 1118  |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
... ... @@ -1157,20 +1157,6 @@
1157 1157  The function of AI2 is similar to the setting method of AI1.
1158 1158  
1159 1159  (% class="table-bordered" %)
1160 -|(% rowspan="2" %)**F5.28**|PULSE INPUT minimum input|Default|0.00kHz
1161 -|Setting range|(% colspan="2" %)0.00kHz~~F5.30 
1162 -|(% rowspan="2" %)**F5.29**|Percentage rate of PULSE INPUT minimum input|Default|0.0%
1163 -|Setting range|(% colspan="2" %)-100.00%~~100.0%
1164 -|(% rowspan="2" %)**F5.30**|PULSE INPUT maximum input|Default|50.00kHz
1165 -|Setting range|(% colspan="2" %)F5.28~~50.00kHz  
1166 -|(% rowspan="2" %)**F5.31**|Percentage rate of PULSE INPUT maximum input|Default|100.0%
1167 -|Setting range|(% colspan="2" %)-100.00%~~100.0%
1168 -|(% rowspan="2" %)**F5.32**|PULSE INPUT filter time|Default|0.10s
1169 -|Setting range|(% colspan="2" %)0.00s~~10.00s
1170 -
1171 -This group of function codes defines the corresponding relationship when pulse is used as the frequency setting method. Pulse frequency input can only be input through DI6 channel. The application of this group of functions is similar to that of AI1.
1172 -
1173 -(% class="table-bordered" %)
1174 1174  |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1175 1175  |Setting range|(% colspan="2" %)0.0s~~3600.0s
1176 1176  |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
... ... @@ -1208,7 +1208,7 @@
1208 1208  
1209 1209  Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1210 1210  
1211 -= 7 F6 group output terminals =
1215 += F6 group output terminals =
1212 1212  
1213 1213  The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1214 1214  
... ... @@ -1462,8 +1462,14 @@
1462 1462  
1463 1463  For the second output, the parameter setting method is the same as F6.28~~F6.32.
1464 1464  
1465 -= 8 F7 group keypad display =
1469 +(% class="table-bordered" %)
1470 +|(% rowspan="2" %)**F6.38**|The setting time of timer|Default|0
1471 +|Setting range|(% colspan="3" %)0.00s~~100.0s
1466 1466  
1473 +Set the timer setting time
1474 +
1475 += F7 group keypad display =
1476 +
1467 1467  (% class="table-bordered" %)
1468 1468  |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1469 1469  |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
... ... @@ -1673,7 +1673,7 @@
1673 1673  |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1674 1674  |Setting range|(% colspan="2" %)-
1675 1675  
1676 -= 9 F8 group auxiliary functions =
1686 += F8 group auxiliary functions =
1677 1677  
1678 1678  (% class="table-bordered" %)
1679 1679  |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
... ... @@ -1973,7 +1973,7 @@
1973 1973  
1974 1974  Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1975 1975  
1976 -= 10 F9 group pid function of process control =
1986 += F9 group pid function of process control =
1977 1977  
1978 1978  PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1979 1979  
... ... @@ -1980,6 +1980,9 @@
1980 1980  (% style="text-align:center" %)
1981 1981  [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1982 1982  
1993 +(% style="text-align:center" %)
1994 +[[image:生产流程图.png]]
1995 +
1983 1983  Figure 6-10-1 Block diagram of process PID principle
1984 1984  
1985 1985  (% class="table-bordered" %)
... ... @@ -2175,7 +2175,7 @@
2175 2175  
2176 2176  Figure 6-10-2 PID sleep and wake-up timing diagram
2177 2177  
2178 -= 11 FA group faults & protection =
2191 += FA group faults & protection =
2179 2179  
2180 2180  (% class="table-bordered" %)
2181 2181  |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
... ... @@ -2299,23 +2299,17 @@
2299 2299  |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2300 2300  |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2301 2301  |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2302 -|(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2303 -|(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2315 +|(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2316 +|(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2304 2304  |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2305 2305  |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2306 2306  |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2307 -| |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)(((
2320 +| |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)(((
2308 2308  PID feedback loss during
2309 2309  
2310 2310  Running (Err31) (0~~2,as ones place of FA.13)
2311 2311  )))
2312 -|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2313 -Overcurrent stall Integral coefficient
2314 -)))|(% colspan="2" style="width:451px" %)Default|500
2315 -|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2316 2316  
2317 -set overcurrent stall Integral coefficient rate.
2318 -
2319 2319  When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2320 2320  
2321 2321  When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
... ... @@ -2323,22 +2323,29 @@
2323 2323  When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2324 2324  
2325 2325  (% class="table-bordered" %)
2326 -|(% rowspan="2" %)(((
2327 -FA.17
2328 -)))|(((
2329 -Undervoltage setting
2330 -)))|(((
2333 +|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2334 +Overcurrent stall Integral coefficient
2335 +)))|(% colspan="2" style="width:451px" %)Default|500
2336 +|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2337 +
2338 +Set overcurrent stall Integral coefficient rate.
2339 +
2340 +(% class="table-bordered" %)
2341 +|(% rowspan="3" %)(((
2342 +**FA.17**
2343 +)))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |(((
2331 2331  Default
2332 2332  )))|(((
2333 -100.0%
2346 +0
2334 2334  )))
2335 -|(((
2348 +|(% colspan="1" rowspan="2" %)(((
2336 2336  Setting range
2337 -)))|(% colspan="2" rowspan="1" %)(((
2338 -60.0%~~140.0%
2350 +)))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)(((
2351 +General machine instant stop/no-stop
2339 2339  )))
2353 +|1|(% colspan="2" %)Spinning machine instant stop/no-stop
2340 2340  
2341 -Instantaneous power failure mode selection
2355 +Set the mode of instant stop and no-stop.
2342 2342  
2343 2343  (% class="table-bordered" %)
2344 2344  |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
... ... @@ -2409,7 +2409,7 @@
2409 2409  
2410 2410  Note: The function code display data is H.xxx, where H. means hexadecimal data.
2411 2411  
2412 -= 12 FB group frequency swing, length fixing and counting =
2426 += FB group frequency swing, length fixing and counting =
2413 2413  
2414 2414  The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2415 2415  
... ... @@ -2496,7 +2496,7 @@
2496 2496  
2497 2497  Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2498 2498  
2499 -= 13 FC group communication parameters =
2513 += FC group communication parameters =
2500 2500  
2501 2501  (% class="table-bordered" %)
2502 2502  |(% rowspan="2" %)**FC.00**|Local address|Default|1
... ... @@ -2547,7 +2547,7 @@
2547 2547  
2548 2548  Used to determine the output unit of the current value when the communication reads the output current.
2549 2549  
2550 -= 14 FD group muti-stage speed and simple plc functions =
2564 += FD group muti-stage speed and simple plc functions =
2551 2551  
2552 2552  The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2553 2553  
... ... @@ -2706,7 +2706,7 @@
2706 2706  
2707 2707  This parameter determines the target quantity given channel of multi-speed 0.
2708 2708  
2709 -= 15 FE group user password management =
2723 += FE group user password management =
2710 2710  
2711 2711  (% class="table-bordered" %)
2712 2712  |(% rowspan="2" %)**FE.00**|User password|Default|0
1681697850903-377.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Jim
Size
... ... @@ -1,0 +1,1 @@
1 +18.5 KB
Content
1681697969422-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Jim
Size
... ... @@ -1,0 +1,1 @@
1 +10.9 KB
Content
1681698530367-261.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Jim
Size
... ... @@ -1,0 +1,1 @@
1 +10.0 KB
Content
1681698557086-403.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Jim
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
生产流程图.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.AiXia
Size
... ... @@ -1,0 +1,1 @@
1 +1.0 MB
Content