Changes for page 08 Function parameter details
Last modified by Theodore Xu on 2025/02/21 14:13
From version 8.1
edited by Jim(Forgotten)
on 2023/04/13 10:17
on 2023/04/13 10:17
Change comment:
There is no comment for this version
To version 21.1
edited by Theodore Xu
on 2024/03/27 09:37
on 2024/03/27 09:37
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -8 Function parameter details 1 +08 Function parameter details - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Jim1 +XWiki.AiXia - Content
-
... ... @@ -1,4 +1,4 @@ 1 -= 1F0 group basic parameters =1 += F0 group basic parameters = 2 2 3 3 (% class="table-bordered" %) 4 4 |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0 ... ... @@ -13,7 +13,10 @@ 13 13 14 14 It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps. 15 15 16 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it 16 +(% class="box infomessage" %) 17 +((( 18 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it. 19 +))) 17 17 18 18 (% class="table-bordered" %) 19 19 |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0 ... ... @@ -44,7 +44,7 @@ 44 44 45 45 This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. . 46 46 47 -(% class="table-bordered" %) 50 +(% class="table-bordered" style="width:1474px" %) 48 48 |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1 49 49 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure) 50 50 |1|(% colspan="2" %)Digital setting (retentive at power failure) ... ... @@ -51,7 +51,7 @@ 51 51 |2|(% colspan="2" %)AI1 52 52 |3|(% colspan="2" %)AI2 53 53 |4|(% colspan="2" %)Reserved 54 -|5|(% colspan="2" %)PULSE setting(Reserved) 57 +|5|(% colspan="2" %)PULSE setting DI6(Reserved) 55 55 |6|(% colspan="2" %)Multi-stage speed setting 56 56 |7|(% colspan="2" %)Simple PLC 57 57 |8|(% colspan="2" %)PID ... ... @@ -83,10 +83,8 @@ 83 83 84 84 The set frequency is given by the terminal pulse. 85 85 86 -Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~ 100kHz.89 +Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~20kHz. 87 87 88 -Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__ 89 - 90 90 **6: **Multi-stage speed 91 91 92 92 Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency. ... ... @@ -130,8 +130,8 @@ 130 130 131 131 (% class="table-bordered" %) 132 132 |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0 133 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency 134 -|1|(% colspan="2" %)Relative to the frequency source X 134 +|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency 135 +|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X 135 135 |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0 136 136 |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150% 137 137 ... ... @@ -154,13 +154,13 @@ 154 154 155 155 Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y. 156 156 157 -One’s digit:Selection of frequency source 158 +One’s digit: Selection of frequency source 158 158 159 -0: main frequency source X160 +0: Main frequency source X 160 160 161 161 The main frequency X is used as the target frequency. 162 162 163 -1: main and auxiliary calculation results164 +1: Main and auxiliary calculation results 164 164 165 165 The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits). 166 166 ... ... @@ -178,9 +178,9 @@ 178 178 179 179 4: Switchover between Y and main (X) & auxiliary(Y) calculation 180 180 181 -When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.182 +When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency. 182 182 183 -When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.184 +When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency. 184 184 185 185 Ten’s digit:X and Y calculation relationship: 186 186 ... ... @@ -205,30 +205,30 @@ 205 205 The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency. 206 206 207 207 (% class="table-bordered" %) 208 -|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz 209 -|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection) 209 +|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz 210 +|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection) 210 210 211 211 When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter. 212 212 213 -(% class="table-bordered" %) 214 -|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0 215 -|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction 216 -|1|(% colspan="2" %)Reverse direction 214 +(% class="table-bordered" style="width:1454px" %) 215 +|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0 216 +|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction 217 +|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction 217 217 218 218 By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W). 219 219 220 220 Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged. 221 221 222 -(% class="table-bordered" %) 223 -|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz 224 -|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz 225 -|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0 226 -|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12 227 -|1|(% colspan="2" %)AI1 228 -|2|(% colspan="2" %)AI2 229 -|3|(% colspan="2" %)Reserved 230 -|4|(% colspan="2" %)Reserved 231 -|5|(% colspan="2" %)Communication setting 223 +(% class="table-bordered" style="width:1473px" %) 224 +|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz 225 +|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz 226 +|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0 227 +|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12 228 +|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1 229 +|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2 230 +|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved 231 +|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved 232 +|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting 232 232 233 233 Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12. 234 234 ... ... @@ -235,31 +235,33 @@ 235 235 For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency. 236 236 237 237 (% class="table-bordered" %) 238 -|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz 239 -|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10 240 -|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz 241 -|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10 239 +|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz 240 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10 241 +|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz 242 +|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10 242 242 243 243 When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value. 244 244 245 245 (% class="table-bordered" %) 246 -|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz 247 -|Setting Range|(% colspan="2" %)0.00Hz~~F0.12 247 +|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz 248 +|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12 248 248 249 249 When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15. 250 250 251 251 (% class="table-bordered" %) 252 -|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0 253 -|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit 254 -|1|(% colspan="2" %)Stop 255 -|2|(% colspan="2" %)Standby(Running at 0 Hz) 253 +|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0 254 +|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit 255 +|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop 256 +|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz) 256 256 257 257 Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop. 258 258 259 259 (% class="table-bordered" %) 260 -|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent 261 -|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz 261 +|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent 262 +|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz 262 262 264 += Carrier frequency = 265 + 263 263 This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced. 264 264 265 265 When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases. ... ... @@ -387,7 +387,7 @@ 387 387 388 388 The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20. 389 389 390 -= 2F1 group start & stop control =393 += F1 group start & stop control = 391 391 392 392 (% class="table-bordered" %) 393 393 |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0 ... ... @@ -547,7 +547,7 @@ 547 547 548 548 Setting whether the AC drive has output when running frequency is 0 549 549 550 -= 3F2 group motor parameters =553 += F2 group motor parameters = 551 551 552 552 (% class="table-bordered" %) 553 553 |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0 ... ... @@ -641,7 +641,9 @@ 641 641 642 642 When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0. 643 643 647 +{{info}} 644 644 **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.** 649 +{{/info}} 645 645 646 646 (% class="table-bordered" %) 647 647 |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent ... ... @@ -660,7 +660,7 @@ 660 660 661 661 The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) . 662 662 663 -= 4F3 group vector control parameters =668 += F3 group vector control parameters = 664 664 665 665 F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1. 666 666 ... ... @@ -797,7 +797,7 @@ 797 797 798 798 During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15. 799 799 800 -= 5F4 group v/f control parameters =805 += F4 group v/f control parameters = 801 801 802 802 This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control. 803 803 ... ... @@ -966,7 +966,7 @@ 966 966 967 967 According to the actual use, select the situation where the AVR function is enabled. 968 968 969 -= 6F5 group input terminals =974 += F5 group input terminals = 970 970 971 971 The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals. 972 972 ... ... @@ -1101,18 +1101,27 @@ 1101 1101 1102 1102 0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor. 1103 1103 1109 +[[image:1681697850903-377.png||height="282" width="633"]] 1110 + 1104 1104 1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV. 1105 1105 1106 - 2: Three-linemode 1: This mode Din is the enableterminal, and the direction is controlled by FWD and REV respectively.1113 +[[image:1681697969422-504.png]] 1107 1107 1108 - Butthepulse isvalid,it mustbecompletedbydisconnectingtheDin terminalsignalwhen stopping.1115 +2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively. 1109 1109 1117 +DIN is pulse effective, user need to disconnect the Din terminal signal when stop. 1118 + 1110 1110 Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control". 1111 1111 1121 +[[image:1681698530367-261.png||height="298" width="628"]] 1122 + 1112 1112 3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal. 1113 1113 1114 1114 Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control". 1115 1115 1127 +[[image:1681698557086-403.png||height="267" width="625"]] 1128 + 1129 + 1116 1116 (% class="table-bordered" %) 1117 1117 |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz 1118 1118 |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz ... ... @@ -1194,7 +1194,7 @@ 1194 1194 1195 1195 Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid. 1196 1196 1197 -= 7F6 group output terminals =1211 += F6 group output terminals = 1198 1198 1199 1199 The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals. 1200 1200 ... ... @@ -1454,7 +1454,7 @@ 1454 1454 1455 1455 Set the timer setting time 1456 1456 1457 -= 8F7 group keypad display =1471 += F7 group keypad display = 1458 1458 1459 1459 (% class="table-bordered" %) 1460 1460 |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0 ... ... @@ -1665,7 +1665,7 @@ 1665 1665 |(% rowspan="2" %)**F7.15**|Performance software version|Default|- 1666 1666 |Setting range|(% colspan="2" %)- 1667 1667 1668 -= 9F8 group auxiliary functions =1682 += F8 group auxiliary functions = 1669 1669 1670 1670 (% class="table-bordered" %) 1671 1671 |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz ... ... @@ -1965,7 +1965,7 @@ 1965 1965 1966 1966 Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10. 1967 1967 1968 -= 10F9 group pid function of process control =1982 += F9 group pid function of process control = 1969 1969 1970 1970 PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows: 1971 1971 ... ... @@ -1972,6 +1972,9 @@ 1972 1972 (% style="text-align:center" %) 1973 1973 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]] 1974 1974 1989 +(% style="text-align:center" %) 1990 +[[image:生产流程图.png]] 1991 + 1975 1975 Figure 6-10-1 Block diagram of process PID principle 1976 1976 1977 1977 (% class="table-bordered" %) ... ... @@ -2167,7 +2167,7 @@ 2167 2167 2168 2168 Figure 6-10-2 PID sleep and wake-up timing diagram 2169 2169 2170 -= 11FA group faults & protection =2187 += FA group faults & protection = 2171 2171 2172 2172 (% class="table-bordered" %) 2173 2173 |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1 ... ... @@ -2291,23 +2291,17 @@ 2291 2291 |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000 2292 2292 |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13) 2293 2293 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13) 2294 -|(% style="width:316px" %)Hundr -eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)2295 -|(% style="width:316px" %)Thous -ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)2311 +|(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13) 2312 +|(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30) 2296 2296 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping 2297 2297 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode 2298 2298 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost 2299 -| |(% style="width:316px" %)Ten thous -ands Place|(% colspan="3" style="width:978px" %)(((2316 +| |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)((( 2300 2300 PID feedback loss during 2301 2301 2302 2302 Running (Err31) (0~~2,as ones place of FA.13) 2303 2303 ))) 2304 -|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)((( 2305 -Overcurrent stall Integral coefficient 2306 -)))|(% colspan="2" style="width:451px" %)Default|500 2307 -|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000 2308 2308 2309 -set overcurrent stall Integral coefficient rate. 2310 - 2311 2311 When “free stop” is selected: the inverter prompts Err~*~* and stops directly. 2312 2312 2313 2313 When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping. ... ... @@ -2315,22 +2315,29 @@ 2315 2315 When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21. 2316 2316 2317 2317 (% class="table-bordered" %) 2318 -|(% rowspan="2" %)((( 2319 -FA.17 2320 -)))|((( 2321 -Undervoltage setting 2322 -)))|((( 2329 +|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)((( 2330 +Overcurrent stall Integral coefficient 2331 +)))|(% colspan="2" style="width:451px" %)Default|500 2332 +|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000 2333 + 2334 +Set overcurrent stall Integral coefficient rate. 2335 + 2336 +(% class="table-bordered" %) 2337 +|(% rowspan="3" %)((( 2338 +**FA.17** 2339 +)))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |((( 2323 2323 Default 2324 2324 )))|((( 2325 - 100.0%2342 +0 2326 2326 ))) 2327 -|((( 2344 +|(% colspan="1" rowspan="2" %)((( 2328 2328 Setting range 2329 -)))|(% colspan="2" rowspan="1" %)((( 2330 - 60.0%~~140.0%2346 +)))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)((( 2347 +General machine instant stop/no-stop 2331 2331 ))) 2349 +|1|(% colspan="2" %)Spinning machine instant stop/no-stop 2332 2332 2333 - Instantaneouspowerfailuremodeselection2351 +Set the mode of instant stop and no-stop. 2334 2334 2335 2335 (% class="table-bordered" %) 2336 2336 |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0% ... ... @@ -2401,7 +2401,7 @@ 2401 2401 2402 2402 Note: The function code display data is H.xxx, where H. means hexadecimal data. 2403 2403 2404 -= 12FB group frequency swing, length fixing and counting =2422 += FB group frequency swing, length fixing and counting = 2405 2405 2406 2406 The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions. 2407 2407 ... ... @@ -2488,7 +2488,7 @@ 2488 2488 2489 2489 Figure 6-12-2 Schematic diagram of set count value given and designated count value given 2490 2490 2491 -= 13FC group communication parameters =2509 += FC group communication parameters = 2492 2492 2493 2493 (% class="table-bordered" %) 2494 2494 |(% rowspan="2" %)**FC.00**|Local address|Default|1 ... ... @@ -2539,7 +2539,7 @@ 2539 2539 2540 2540 Used to determine the output unit of the current value when the communication reads the output current. 2541 2541 2542 -= 14FD group muti-stage speed and simple plc functions =2560 += FD group muti-stage speed and simple plc functions = 2543 2543 2544 2544 The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics. 2545 2545 ... ... @@ -2698,7 +2698,7 @@ 2698 2698 2699 2699 This parameter determines the target quantity given channel of multi-speed 0. 2700 2700 2701 -= 15FE group user password management =2719 += FE group user password management = 2702 2702 2703 2703 (% class="table-bordered" %) 2704 2704 |(% rowspan="2" %)**FE.00**|User password|Default|0
- 1681697850903-377.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.5 KB - Content
- 1681697969422-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.9 KB - Content
- 1681698530367-261.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.0 KB - Content
- 1681698557086-403.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Jim - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content
- 生产流程图.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.AiXia - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.0 MB - Content