Wiki source code of 2.7 Function parameter details

Version 1.1 by Leo Wei on 2022/06/08 14:51

Hide last authors
Leo Wei 1.1 1 = 6.1 F0 group basic parameters =
2
3 (% class="table-bordered" %)
4 |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
5 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Sensorless vector control(SVC)
6 |1|(% colspan="2" %)V/F Control
7
8 0: Sensorless vector control(SVC)
9
10 Refers to the open loop vector. It is suitable for general high-performance control occasions, one AC drive can only drive one motor. Such as machine tools, centrifuges, wire drawing machines, injection molding machines and other loads.
11
12 1: V/F Control
13
14 It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15
16 **✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
17
18 (% class="table-bordered" %)
19 |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
20 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Keypad control
21 |1|(% colspan="2" %)Terminal control
22 |2|(% colspan="2" %)Communication control
23
24 Select the source of AC drive control command.
25
26 AC drive commands include: start, stop, forward, reverse, jog, etc.
27
28 0: Keypad control(“LOCAL/REMOT”LED off);
29
30 Command control is performed by the RUN and STOP/RESET keys on the Keypad.
31
32 1: Terminal control(“LOCAL/REMOT”LED on);
33
34 Command control is carried out by multi-function input terminals FWD, REV, FJOG, RJOG, etc.
35
36 2: Communication control(“LOCAL/REMOT”Led blinking)
37
38 Command control is given by the upper machine through communication.
39
40 (% class="table-bordered" %)
41 |(% rowspan="3" %)**F0.02**|(% colspan="2" %)UP/DOWN standard|Default|0
42 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Running frequency
43 |1|(% colspan="2" %)Set frequency
44
45 This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
46
47 (% class="table-bordered" %)
48 |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
49 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
50 |1|(% colspan="2" %)Digital setting (retentive at power failure)
51 |2|(% colspan="2" %)AI1
52 |3|(% colspan="2" %)AI2
53 |4|(% colspan="2" %)Reserved
54 |5|(% colspan="2" %)Reserved
55 |6|(% colspan="2" %)Multi-stage speed setting
56 |7|(% colspan="2" %)Simple PLC
57 |8|(% colspan="2" %)PID
58 |9|(% colspan="2" %)Communication setting
59
60 Select the main source of the AC drive’s input frequency. There are 10 main frequency sources:
61
62 0: Digital setting (non-retentive at power failure)
63
64 The initial value is 0. The frequency can be increased or decreased by the pulse knob, and the set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
65
66 Non-retentive means that after the AC drive is powered off, the set frequency value will be restored to 0; it will be cleared after switching as the frequency source, so this parameter should not be the object of frequency source switching.
67
68 1: Digital setting (retentive at power failure)
69
70 The initial value is the value of F0.08 "Keypad setting frequency".
71
72 The set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
73
74 Retentive means that when the AC drive is powered on again after power failure, the set frequency is the value before the last power failure (note that it is used in conjunction with F0.23).
75
76 2: AI1
77
78 3: AI2
79
80 Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
81
82 4/5: Reserved
83
84 6: Multi-stage speed
85
86 Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency.
87
88 7: Simple PLC
89
90 Select simple PLC mode. When the frequency source is simple PLC, you need to set the FD group "multi-speed and PLC" parameters to determine the set frequency.
91
92 8: PID
93
94 Select process PID control. At this time, you need to set the F9 group "PID function of process control ". The running frequency of the inverter is the frequency value after PID action. For the meaning of PID given source, given amount, feedback source, etc., please refer to the introduction of "PID Function of process control" in F9 group.
95
96 9: Communication setting
97
98 Means that the main frequency source is given by the upper machine through communication.
99
100 (% class="table-bordered" %)
101 |(% rowspan="11" %)**F0.04**|(% colspan="2" %)Setting auxiliary frequency source Y|Default|0
102 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
103 |1|(% colspan="2" %)Digital setting (retentive at power failure)
104 |2|(% colspan="2" %)AI1
105 |3|(% colspan="2" %)AI2
106 |4|(% colspan="2" %)Reserved
107 |5|(% colspan="2" %)Reserved
108 |6|(% colspan="2" %)Multi-stage speed setting
109 |7|(% colspan="2" %)Simple PLC
110 |8|(% colspan="2" %)PID
111 |9|(% colspan="2" %)Communication setting
112
113 When the auxiliary frequency source is used as an independent frequency given channel (that is, the frequency source is selected to switch from X to Y), its usage is the same as that of the main frequency source X.
114
115 When the auxiliary frequency source is used as a superimposed reference (that is, the frequency source is selected as X+Y, X to X+Y switching or Y to X+Y switching), there are the following special features:
116
117 ~1. When the auxiliary frequency source is digital setting or pulse knob setting, the preset frequency (F0.08) does not work. You can use the ▲/▼ keys of the keyboard (or UP, DOWN of the multi-function input terminal) to adjust up and down based on the given frequency.
118
119 2. When the auxiliary frequency source is analog input setting (AI1, AI2) or pulse input setting, 100% of the input setting corresponds to the auxiliary frequency source range (see the description of F0.05 and F0.06). If you need to adjust up and down on the basis of the main set frequency, please set the corresponding setting range of the analog input to .n%~~+n%.
120
121 3. When the frequency source is pulse input setting, it is similar to analog input setting.
122
123 Tip: The selection of auxiliary frequency source Y and the main frequency source X cannot be the same, that is, the main and auxiliary frequency sources cannot use the same frequency given channel.
124
125 (% class="table-bordered" %)
126 |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
127 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
128 |1|(% colspan="2" %)Relative to the frequency source X
129 |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
130 |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
131
132 When the frequency source is selected as the frequency superposition setting (F0.07 is set to 1, 3 or 4), it is used to determine the adjustment range of the auxiliary frequency source. F0.05 is used to determine the relative object of the range. If it is relative to the maximum frequency (F0.10), its range is a fixed value; if it is relative to the main frequency source X, its range will follow the change of main frequency source X.
133
134 (% class="table-bordered" %)
135 |(% rowspan="13" %)**F0.07**|(% colspan="2" %)Frequency reference selection|Default|0
136 |(% rowspan="12" %)Setting Range|One’s digit|(% colspan="2" %)Selection of frequency source
137 |0|(% colspan="2" %)main frequency source X
138 |1|(% colspan="2" %)main and auxiliary calculation results(The calculation relationship is determined by the ten’s digits)
139 |2|(% colspan="2" %)Switchover between X and Y
140 |3|(% colspan="2" %)Switchover between X and main (X) & auxiliary(Y) calculation
141 |4|(% colspan="2" %)Switchover between Y and main (X) & auxiliary(Y) calculation
142 |Ten’s digit|(% colspan="2" %)X and Y calculation relationship
143 |0|(% colspan="2" %)X+Y
144 |1|(% colspan="2" %)X-Y
145 |2|(% colspan="2" %)MAX(X, Y)
146 |3|(% colspan="2" %)MIN(X, Y)
147 |4|(% colspan="2" %)X* Y
148
149 Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
150
151 One’s digit:Selection of frequency source
152
153 0:main frequency source X
154
155 The main frequency X is used as the target frequency.
156
157 1: main and auxiliary calculation results
158
159 The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
160
161 2: Switchover between X and Y
162
163 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
164
165 When the multi-function input terminal 18: frequency source switching is valid, the auxiliary frequency source Y is taken as the target frequency.
166
167 3: Switchover between X and main (X) & auxiliary(Y) calculation
168
169 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
170
171 When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
172
173 4: Switchover between Y and main (X) & auxiliary(Y) calculation
174
175 When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
176
177 When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
178
179 Ten’s digit:X and Y calculation relationship:
180
181 0: X+Y
182
183 The sum of the main frequency source X and the auxiliary frequency source Y serves as the target frequency. Realize frequency superposition given function.
184
185 1: X-Y
186
187 The difference between the main frequency source X and the auxiliary frequency source Y serves as the target frequency.
188
189 2: MAX(X, Y)
190
191 Take the main frequency source X and auxiliary frequency source Y with the largest absolute value as the target frequency.
192
193 3: MIN(X, Y)
194
195 Take the main frequency source X and the auxiliary frequency source Y with the smallest absolute value as the target frequency.
196
197 4: X * Y
198
199 The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
200
201 (% class="table-bordered" %)
202 |(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
203 |Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
204
205 When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
206
207 (% class="table-bordered" %)
208 |(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
209 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
210 |1|(% colspan="2" %)Reverse direction
211
212 By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
213
214 Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
215
216 (% class="table-bordered" %)
217 |(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
218 |(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
219 |(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
220 |(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
221 |1|(% colspan="2" %)AI1
222 |2|(% colspan="2" %)AI2
223 |3|(% colspan="2" %)Reserved
224 |4|(% colspan="2" %)Reserved
225 |5|(% colspan="2" %)Communication setting
226
227 Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
228
229 For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
230
231 (% class="table-bordered" %)
232 |(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
233 |Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
234 |(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
235 |Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
236
237 When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
238
239 (% class="table-bordered" %)
240 |(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
241 |Setting Range|(% colspan="2" %)0.00Hz~~F0.12
242
243 When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
244
245 (% class="table-bordered" %)
246 |(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
247 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
248 |1|(% colspan="2" %)Stop
249 |2|(% colspan="2" %)Standby(Running at 0 Hz)
250
251 Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
252
253 (% class="table-bordered" %)
254 |(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
255 |Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
256
257 This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
258
259 When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
260
261 When the carrier frequency is high, the motor loss will decrease and the motor temperature rise will decrease, but the AC drive loss will increase, the AC drive temperature rise will increase, and the interference will increase.
262
263 The effect of adjusting the carrier frequency on the following performance:
264
265 (% class="table-bordered" %)
266 |Carrier Frequency|Low  → High
267 |Motor Noise|Much → Little
268 |Output Current Waveform|Bad  → Good
269 |Motor Temperature Rise|High  →  Low
270 |AC Drive Temperature Rise|Low  → High
271 |Leakage Current|Low  → High
272 |External Radiation Interference|Low  → High
273
274 (% class="table-bordered" %)
275 |(% rowspan="2" %) **F0.17**|PWM Output Method Selection|Default|0
276 |Setting Range|(% colspan="2" %)(((
277 0:5/7-stage automatic switching
278
279 1:7-stage
280 )))
281
282 Method selection of PWM Output Method
283
284 (% class="table-bordered" %)
285 |(% rowspan="2" %)**F0.18**|Acceleration Time 1|Default|Model Dependent
286 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
287 |(% rowspan="2" %)**F0.19**|Deceleration Time 1|Default|Model Dependent
288 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
289
290 The acceleration time refers to the time required to accelerate from zero frequency to the acceleration/deceleration base frequency (determined by F0.24), see t1 in Figure 6-1-1.
291
292 The deceleration time refers to the time required to decelerate from the acceleration/deceleration base frequency (determined by F0.24) to zero frequency, see t2 in Figure 6-1-1.
293
294
295 (% style="text-align:center" %)
296 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a0c9063bc45a4ec4.png]]
297
298 Figure 6-1-1 Schematic diagram of acceleration and deceleration time
299
300 Pay attention to the difference between actual acceleration and deceleration time and set acceleration and deceleration time.
301
302 There are 4 groups of acceleration and deceleration time options
303
304 Group 1: F0.18. F0.19;
305
306 Group 2: F8.03. F8.04;
307
308 Group 3: F8.05. F8.06;
309
310 Group 4: F8.07. F8.08.
311
312 The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
313
314 (% class="table-bordered" %)
315 |(% rowspan="4" %)**F0.20**|(% colspan="2" %)Default setting restoring|Default|0
316 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)No operation
317 |1|(% colspan="2" %)Restore to factory default setting (not including motor parameters )
318 |2|(% colspan="2" %)clear fault record 
319
320 After changing this parameter to 1 or 2, all parameters will be initialized, and then this parameter will be reset to 0 automatically.
321
322 1: Restoring default settings,not including the F2 group parameters and error records.
323
324 2: Cleaning error records.
325
326 Cleaning error records. accumulative running time(F7.09). accumulative power-on time(F7.13). accumulative power consumption(F7.14).
327
328 (% class="table-bordered" %)
329 |(% rowspan="3" %)**F0.21**|(% colspan="2" %)Function code modification attribute|Default|0
330 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Modifiable
331 |1|(% colspan="2" %)Non-modifiable
332
333 Function code modification attribute,After locking, it can prevent the parameter value from being changed by mistake
334
335 0:All parameters can be changed
336
337 1:All parameters can only be viewed,but not changed,except F0.21
338
339 (% class="table-bordered" %)
340 |(% rowspan="3" %)**F0.22**|(% colspan="2" %)Digital setting frequency shutdown memory selection|Default|1
341 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Non-retentive
342 |1|(% colspan="2" %)Retentive
343
344 This function is only valid when frequency source is digital setting
345
346 0: Non-retentive, Refers to the digital set frequency value restored to the set value of F0.08 after the AC drive stops.
347
348 1: Retentive, Refers to the digital set frequency value restored to the set frequency after the AC drive stops.
349
350 (% class="table-bordered" %)
351 |(% rowspan="4" %)**F0.23**|(% colspan="2" %)Acceleration & deceleration time unit|Default|1
352 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)1s
353 |1|(% colspan="2" %)0.1s
354 |2|(% colspan="2" %)0.01s
355
356 This function is used to determine all acceleration and deceleration time units. Note that when the value is modified, the actual acceleration/deceleration time will also change accordingly (the position of the decimal point changes, and the actual display digits remain unchanged), so it is necessary to readjust the size of various acceleration/deceleration settings according to the situation. Pay attention to the following function codes: F0.18, F0.19, F8.01, F8.02, F8.03, F8.04, F8.05, F8.06, F8.07, F8.08.
357
358 (% class="table-bordered" %)
359 |(% rowspan="4" %)**F0.24**|(% colspan="2" %)Base Frequency of Acceleration & Deceleration Time|Default|0
360 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Maximum frequency(F0.10)
361 |1|(% colspan="2" %)Set Frequency
362 |2|(% colspan="2" %)100Hz
363
364 Define the frequency range corresponding to the acceleration and deceleration time. See Figure 6.1 Acceleration and deceleration time diagram
365
366 (% class="table-bordered" %)
367 |(% rowspan="3" %)**F0.25**|(% colspan="2" %)Cooling Fan Running Option|Default|0
368 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Automatic running
369 |1|(% colspan="2" %)Keep running when power on
370
371 This function is used to set the operating mode of the cooling fan. This setting can be adjusted according to changes in operating conditions to achieve a balance between maintaining continuous maximum heat dissipation and extending fan life.
372
373 0: Automatic running.When the motor is running, the fan runs; when the motor stops, the fan stops running after a delay of 30 seconds. When the temperature of the AC drive module exceeds 50 degrees, the fan also starts to run.
374
375 1: Keep running .The fan will keep running after AC drive is powered on
376
377 (% class="table-bordered" %)
378 |(% rowspan="3" %)**F0.26**|(% colspan="2" %)Frequency Command Decimal Point|Default|2
379 |(% rowspan="2" %)Setting range|1|(% colspan="2" %)One Decimal Place
380 |2|(% colspan="2" %)Two Decimal Place
381
382 The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
383
384 = 6.2 F1 group start & stop control =
385
386 (% class="table-bordered" %)
387 |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
388 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Start directly(When the starting DC braking time is not 0, the DC braking will be performed first)
389 |1|(% colspan="2" %)Speed tracing and start
390 |2|(% colspan="2" %)Pre-excitation start(When the pre-excitation time is not 0, first pre-excitation and then start)
391
392 0: Start directly
393
394 if F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the startup frequency. When the setting is not 0, implement DC braking first and then start, which can solve the problem of reverse rotation when starting with small inertia load.
395
396 1: Speed tracing and start
397
398 The AC drive first detects the rotation and speed of the motor, and then starts according to the real-time speed. It is suitable for restarting after instantaneous power failure with large inertial loads or for smooth restarting of rotating equipment. Set accurate F2 group motor parameters to obtain better speed tracking and restart performance.
399
400 2: Pre-excitation start(Asynchronous motor)
401
402 Pre-excitation current and time share function codes with DC braking current and time.
403
404 If F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the starting frequency. When the setting is not 0, the pre-excitation is performed first and then the start is performed to improve the dynamic response speed.
405
406 (% class="table-bordered" %)
407 |(% rowspan="5" %)**F1.01**|(% colspan="2" %)Speed tracking mode|Default|0
408 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Start with the frequency of input power failure
409 |1|(% colspan="2" %)Start at zero speed
410 |2|(% colspan="2" %)Start at the maximum frequency F0.10
411 |3|(% colspan="2" %)Excitation search
412
413 Provide 4 speed tracking methods:
414
415 0: Tracking down from the frequency during a power outage, this method is usually used.
416
417 1: Start tracking upwards from 0 frequency, use in the case of a longer power outage and restart
418
419 2: Track down from the maximum frequency, generally used for generating loads
420
421 3: Output the excitation current to estimate the current frequency of the motor. After the estimation is successful, the inverter will start at the estimated frequency
422
423 (% class="table-bordered" %)
424 |(% rowspan="2" %)**F1.02**|Speed tracking coefficient|Default|20
425 |Setting Range|(% colspan="2" %)1~~100
426
427 In speed tracking restart mode, set the speed of speed tracking. The larger the parameter setting, the faster the tracking speed. But too large may cause unreliable tracking.
428
429 (% class="table-bordered" %)
430 |(% rowspan="2" %)**F1.03**|Starting frequency|Default|0.00Hz
431 |Setting Range|(% colspan="2" %)0.00Hz~~10.00Hz
432 |(% rowspan="2" %)**F1.04**|Hold time of starting frequency|Default|0.0s
433 |Setting Range|(% colspan="2" %)0.0s~~100.0s
434
435 To ensure the torque at startup, please set an appropriate startup frequency. In addition, in order to wait for the magnetic flux to be established when the motor starts, the starting frequency is maintained for a certain period of time and then the acceleration starts. The starting frequency value F1.03 is not limited by the lower limit frequency. If the given frequency (frequency source) is less than the starting frequency, the inverter cannot be started and is in the standby state. When switching between forward and reverse, the start frequency holding time has no effect. The hold time is not included in the acceleration time, but is included in the running time of the simple PLC.
436
437 (% class="table-bordered" %)
438 |(% rowspan="2" %)**F1.05**|DC braking current at start-up/Pre-excitation current|Default|0%
439 |Setting Range|(% colspan="2" %)0%~~100%
440 |(% rowspan="2" %)**F1.06**|DC braking time at start-up/Pre-excitation time|Default|0.0s
441 |Setting Range|(% colspan="2" %)0.0s~~100.0s
442
443 Starting DC braking is generally used to completely stop the motor before starting. Pre-excitation is generally used to establish a magnetic field before starting the motor to improve response speed.
444
445 If the start mode is direct start, the AC drive will first perform DC braking according to the set start DC braking current when starting, and then start running after the set start DC braking time. If the DC braking time is set to 0, it will start directly without DC braking. The greater the DC braking current, the greater the braking force. If the start mode is asynchronous motor pre-excitation start, the AC drive will first establish the magnetic field according to the set start pre-excitation current when starting, and then start running after the set start pre-excitation time. If the pre-excitation time is set to 0, it will start directly without pre-excitation. Start DC braking/pre-excitation current refers to the percentage relative to the AC drive rated current.
446
447 (% class="table-bordered" %)
448 |(% rowspan="4" %)**F1.07**|(% colspan="2" %)Acceleration & deceleration method|Default|0
449 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Linear acceleration/deceleration
450 |1|(% colspan="2" %)S-curve acceleration/deceleration A
451 |2|(% colspan="2" %)S-curve acceleration/deceleration B
452
453 Select the frequency change mode of the AC drive during the start and stop process.
454
455 0:Linear acceleration/deceleration
456
457 The output frequency increases or decreases linearly. The acceleration/deceleration time changes according to the set acceleration/deceleration time. VB series AC drive provides 4 kinds of acceleration and deceleration time. The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
458
459 1: S-curve acceleration/deceleration A
460
461 The output frequency increases or decreases according to the S curve. S curve is generally used in places where the start and stop process is relatively gentle, such as elevators and conveyor belts. Function codes F1.08 and F1.09 respectively define the time proportions of the start and end segments of S curve acceleration and deceleration
462
463 2: S-curve acceleration/deceleration B
464
465 In this acceleration and deceleration curve, the rated motor frequency fb is always the inflection point of the S curve. As shown in Figure 6-3. Generally used in the high-speed area above the rated frequency, where short-term acceleration and deceleration are required.
466
467 When the set frequency is above the rated frequency, the acceleration and deceleration time is:
468
469 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_840ad38ebbb1d9bd.gif]]
470
471 Among them, f is the set frequency; fb is the rated frequency of the motor;
472
473 T is the time to accelerate from 0 frequency to rated frequency fb.
474
475 (% class="table-bordered" %)
476 |(% rowspan="2" %)**F1.08**|Time proportion of S-curve start segment|Default|30.0%
477 |Setting Range|(% colspan="2" %)0.0%~~70.0%
478 |(% rowspan="2" %)**F1.09**|Time proportion of S-curve end segment|Default|30.0%
479 |Setting Range|(% colspan="2" %)0.0%~~70.0%
480
481 The function codes F1.08 and F1.09 respectively define the time proportions of the start section and the end section of S-curve acceleration/deceleration A, and both meet: F1.08 + F1.09 ≤ 100.0%.
482
483 In Figure 6.2-1, t1 is the parameter defined by parameter F1.08. During this period of time, the slope of the output frequency change gradually increases. t2 is the time defined by parameter F1.09, during which the slope of the output frequency change gradually changes to 0. During the time between t1 and t2, the slope of the output frequency change is fixed.
484
485 (% style="text-align:center" %)
486 [[image:图片1.png]]
487
488 Figure 6-2-1 S Schematic diagram of curve acceleration and deceleration A
489
490 (% style="text-align:center" %)
491 [[image:图片2.png]]
492
493 Figure 6-2-2 S Schematic diagram of curve acceleration and deceleration B
494
495 (% class="table-bordered" %)
496 |(% rowspan="3" %)**F1.10**|Stop mode|Default|0
497 |(% rowspan="2" %)Setting Range|0|Decelerate to stop 
498 |1|Free stopping
499
500 0: Decelerate to stop 
501
502 After the stop command is valid, the AC drive will reduce the output frequency according to the deceleration mode and the defined acceleration/deceleration time, and stop after the frequency drops to 0.
503
504 1: Free stopping
505
506 After the stop command is valid, the AC drive immediately terminates the output. The load stops freely according to mechanical inertia.
507
508 (% class="table-bordered" %)
509 |(% rowspan="2" %)**F1.11**|Trigging frequency of DC braking at stop|Default|0.00Hz
510 |Setting Range|(% colspan="2" %)0.00Hz~~max.frequency 
511 |(% rowspan="2" %)**F1.12**|Waiting time of DC braking at stop|Default|0.0s
512 |Setting Range|(% colspan="2" %)0.0s~~36.0s
513 |(% rowspan="2" %)**F1.13**|The current of DC braking at stop|Default|0%
514 |Setting Range|(% colspan="2" %)0%~~100%
515 |(% rowspan="2" %)**F1.14**|The time of DC braking at stop|Default|0.0s
516 |Setting Range|(% colspan="2" %)0.0s~~36.0s
517
518 Trigging frequency of DC braking at stop: During deceleration to stop, when the output frequency is less than this frequency, the DC braking process at stop will start.
519
520 Waiting time of DC braking at stop: When the output frequency is reduced to the start frequency of F1.11 stop DC braking during stop, the AC drive will stop output and start timing. After the delay time set by F1.12, DC will start again brake. It is used to prevent over-current faults caused by DC braking when the speed is high.
521
522 The current of DC braking at stop: refers to the added DC braking amount. The larger the value, the stronger the DC braking effect.
523
524 The time of DC braking at stop: the time added by the DC braking amount. When this value is 0, it means that there is no DC braking process and the AC drive will stop according to the set deceleration stop process.
525
526 (% style="text-align:center" %)
527 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_fcb1f31274fca2cb.png]]
528
529 Figure 6-2-3 Schematic diagram of DC braking at stop
530
531 (% class="table-bordered" %)
532 |(% rowspan="2" %)**F1.15**|Brake use rate|Default|100%
533 |Setting Range|(% colspan="2" %)0%~~100%
534
535 It is valid for inverters with built-in braking unit. The braking effect of the dynamic braking function can be adjusted.
536
537 (% class="table-bordered" %)
538 |(% rowspan="3" %)**F1.16**|Zero frequency output selection|Default|1
539 |(% rowspan="2" %)Setting Range|0|Open
540 |1|Closed
541
542 Setting whether the AC drive has output when running frequency is 0
543
544 = 6.3 F2 group motor parameters =
545
546 (% class="table-bordered" %)
547 |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
548 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Ordinary asynchronous motor
549 |1|(% colspan="2" %)Variable frequency asynchronous motor
550 |2|(% colspan="2" %)Permanent magnet synchronous motor
551 |3|(% colspan="2" %)Single-phase asynchronous motor
552 |(% rowspan="2" %)**F2.01**|(% colspan="2" %)Motor rated power|Default|Model Dependent
553 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.1kW~~400.0kW
554 |(% rowspan="2" %)**F2.02**|(% colspan="2" %)Motor rated Voltage|Default|Model Dependent
555 |(% colspan="2" %)Setting Range|(% colspan="2" %)0V~~440V
556 |(% rowspan="2" %)**F2.03**|(% colspan="2" %)Motor rated current|Default|Model Dependent
557 |(% colspan="2" %)Setting Range|(% colspan="2" %)(((
558 0.01A~~655.35A(AC drive<=55kW)
559
560 0.1A~~6553.5A(AC drive >55kW)
561 )))
562 |(% rowspan="2" %)**F2.04**|(% colspan="2" %)Motor rated frequency|Default|Model Dependent
563 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequency F0.10
564 |(% rowspan="2" %)**F2.05**|(% colspan="2" %)Motor rated speed|Default|Model Dependent
565 |(% colspan="2" %)Setting Range|(% colspan="2" %)0rpm~~36000rpm
566
567 |** Caution**
568 |(((
569 ~1. Please set according to the nameplate parameters of the motor.
570
571 2. The excellent control performance of vector control requires accurate motor parameters, and accurate parameter identification comes from the correct setting of motor rated parameters.
572
573 3. In order to ensure the control performance, please configure the motor according to the standard adapted motor of the AC drive. If the power of the motor is too far from the standard adapted motor, the control performance of the inverter will be significantly reduced.
574 )))
575
576 (% class="table-bordered" %)
577 |(% rowspan="2" %)**F2.06**|Asynchronous motor stator resistance|Default|Model Dependent
578 |Setting Range|(% colspan="2" %)(((
579 0.001Ω~~65.535Ω(AC drive<=55kW)
580
581 0.0001Ω~~6.5535Ω(AC drive >55kW)
582 )))
583 |(% rowspan="2" %)**F2.07**|Asynchronous motor rotator resistance|Default|Model Dependent
584 |Setting Range|(% colspan="2" %)(((
585 0.001Ω~~65.535Ω(AC drive<=55kW)
586
587 0.0001Ω~~6.5535Ω(AC drive >55kW)
588 )))
589 |(% rowspan="2" %)**F2.08**|Asynchronous motor leakage inductance|Default|Model Dependent
590 |Setting Range|(% colspan="2" %)(((
591 0.01mH~~655.35mH(AC drive<=55kW)
592
593 0.001mH~~65.535mH(AC drive >55kW)
594 )))
595 |(% rowspan="2" %)**F2.09**|Asynchronous motor mutual inductance|Default|Model Dependent
596 |Setting Range|(% colspan="2" %)(((
597 0.1mH~~6553.5mH(AC drive<=55kW)
598
599 0.01mH~~655.35mH(AC drive >55kW)
600 )))
601 |(% rowspan="2" %)**F2.10**|Asynchronous motor no-load current|Default|Model Dependent
602 |Setting Range|(% colspan="2" %)(((
603 0.01A~~F2.03(AC drive<=55kW)
604
605 0.1A~~F2.03(AC drive >55kW)
606 )))
607
608 After the automatic tuning ends normally, the setting values of the asynchronous motor parameters (F2.06~~F2.10) are automatically updated.
609
610 After changing the motor rated power F2.01 each time, the AC drive will automatically restore the default standard motor parameters from F2.06 to F2.10. (Four-pole Y series asynchronous motor)
611
612 If it is impossible to tune the asynchronous motor in the site, you can manually input it with reference to the known parameters of similar motors.
613
614 (% class="table-bordered" %)
615 |(% rowspan="4" %)**F2.11**|(% colspan="2" %)Tuning selection|Default|0
616 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)0:No operation
617 |1|(% colspan="2" %)1:The asynchronous machine static tuning.
618 |2|(% colspan="2" %)2:The asynchronous machine is fully tuned
619
620 **✎Note**: Before tuning, you must set the correct motor type and rated parameters (F2.00-F2.05)
621
622 0: No operation, that is, tuning is prohibited.
623
624 1: The asynchronous motor is statically tuned, which is suitable for occasions where the motor and the load are not easily disconnected and cannot be rotated and tuned.
625
626 Action description: After setting the function code to 1, and pressing the RUN key to confirm, the AC drive will perform static tuning.
627
628 2: Complete tuning of asynchronous motor. In order to ensure the dynamic control performance of the AC drive, please select complete tuning, the motor must be disconnected from the load (no load) during rotary tuning.
629
630 After the complete tuning is selected, the AC drive will perform static tuning first. After the static tuning, the motor will accelerate to 80% of the rated frequency of the motor according to the acceleration time set by F0.18, and hold for a period of time, and then follow the deceleration time set by F0.19 Decelerate to zero speed and end the rotation tuning.
631
632 Action description: After setting the function code to 2, and pressing the RUN key to confirm, the AC drive will perform rotary tuning.
633
634 **Tuning instructions:**
635
636 When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
637
638 **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
639
640 (% class="table-bordered" %)
641 |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
642 |(% rowspan="2" %)Setting Range|1|(% colspan="2" %)General model (G) (constant torque load model)
643 |2|(% colspan="2" %)Pump model (P) (draught fan, water pump type load model)
644
645 This parameter is only for users to view the factory model and cannot be changed.
646
647 1: Suitable for constant torque load with specified rated parameters
648
649 2: Suitable for variable torque loads with specified rated parameters (fans, water pump loads)
650
651 (% class="table-bordered" %)
652 |(% rowspan="2" %)**F2.13**|Single-phase motor turns ratio|Default|140
653 |Setting Range|(% colspan="2" %)50~~200
654
655 The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
656
657 = 6.4 F3 group vector control parameters =
658
659 F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
660
661 (% class="table-bordered" %)
662 |(% rowspan="2" %)**F3.00**|Speed loop proportional gain 1|Default|30
663 |Setting range|(% colspan="2" %)1~~100
664 |(% rowspan="2" %)**F3.01**|Speed loop integral time 1|Default|0.50s
665 |Setting range|(% colspan="2" %)0.01s~~10.00s
666 |(% rowspan="2" %)**F3.02**|Switchover frequency 1|Default|5.00Hz
667 |Setting range|(% colspan="2" %)0.00~~F3.05
668 |(% rowspan="2" %)**F3.03**|Speed loop proportional gain 2|Default|20
669 |Setting range|(% colspan="2" %)0~~100
670 |(% rowspan="2" %)**F3.04**|Speed loop integral time 2|Default|1.00s
671 |Setting range|(% colspan="2" %)0.01s~~10.00s  
672 |(% rowspan="2" %)**F3.05**|Switchover frequency 2|Default|10.00Hz
673 |Setting range|(% colspan="2" %)F3.02~~Maximum frequency F0.10
674
675 F3.00 and F3.01 are PI adjustment parameters when the running frequency is lower than switchover frequency 1 (F3.02).
676
677 F3.03 and F4.04 are PI adjustment parameters for the frequency band between the operating frequency greater than the switchover frequency 2.
678
679 The PI parameters in the frequency band between switchover frequency 1 and switchover frequency 2 are linear switching of two sets of PI parameters, as shown in the following figure:
680
681 (% style="text-align:center" %)
682 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3a0fe23ce96d4424.png]]
683
684 Figure 6-4-1 Schematic diagram of PI parameters
685
686 By setting the proportional coefficient and integral time of the speed regulator, the speed dynamic response characteristics of the vector control can be adjusted. Increasing the proportional gain and reducing the integral time can speed up the dynamic response of the speed loop. If the proportional gain is too large or the integral time is too small, the system may oscillate.
687
688 Suggested adjustment method:
689
690 If the factory parameters cannot meet the requirements, fine-tune the parameters based on the factory value: first increase the proportional gain to ensure that the system does not oscillate; then reduce the integration time to make the system have faster response characteristics and smaller overshoot.
691
692 Note: Improper setting of PI parameters may result in excessive speed overshoot. Even when the overshoot falls back, an overvoltage fault occurs.
693
694 (% class="table-bordered" %)
695 |(% rowspan="2" %)**F3.06**|Slip compensation coefficient of vector control|Default|100%
696 |Setting range|(% colspan="2" %)50%~~200%
697
698 In the speed sensorless vector control mode, this parameter is used to adjust the speed stability accuracy of the motor. When the speed of the motor is heavy, increase this parameter, otherwise decrease this parameter.
699
700 (% class="table-bordered" %)
701 |(% rowspan="2" %)**F3.07**|Speed loop filter time constant.|Default|0.000s
702 |Setting range|(% colspan="2" %)0.000s~~0.100s  
703
704 In vector control mode, the output of the speed loop regulator is the torque current command, and this parameter is used to filter the torque command. Generally, this parameter does not need to be adjusted. When the speed fluctuates greatly, the filter time can be appropriately increased; if the motor oscillates, the parameter should be appropriately reduced.
705
706 The speed loop filter time constant is small, the output torque of the AC drive may vary greatly, but the response is fast.
707
708 (% class="table-bordered" %)
709 |(% rowspan="2" %)**F3.08**|Speed control torque upper limit|Default|150.0%
710 |Setting range|(% colspan="2" %)0.0%~~200.0% 
711
712 In speed control mode, the maximum output torque of the inverter is controlled by F3.08.
713
714 (% class="table-bordered" %)
715 |(% rowspan="3" %)**F3.09**|(% colspan="2" %)Speed/torque control|Default|0
716 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Speed Control
717 |1|(% colspan="2" %)Torque Control
718
719 To select whether the AC drive control mode is speed control or torque control, this function code needs to be judged together with terminal function 29: torque control prohibition and 46: speed control/torque control switching.
720
721 When the torque control prohibition is valid, the AC drive is speed control.
722
723 When the torque control prohibition is invalid, if the speed control/torque control switch is invalid, the control mode is determined by F3.09; if the speed control/torque control switch is valid, the value of F3.09 is reversed.
724
725 When it is torque control, the AC drive running frequency is given by F3.12, F3.13, and the acceleration/deceleration time is given by F3.14, F3.15.
726
727 (% class="table-bordered" %)
728 |(% rowspan="10" %)**F3.10**|(% colspan="2" %)Torque upper limit source in torque control|Default|0
729 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)Digital setting(F3.11)
730 |1|(% colspan="2" %)AI1
731 |2|(% colspan="2" %)AI2
732 |3|(% colspan="2" %)Reserved
733 |4|(% colspan="2" %)Reserved
734 |5|(% colspan="2" %)Communication setting
735 |6|(% colspan="2" %)MIN(AI1,AI2)
736 |7|(% colspan="2" %)MAX(AI1,AI2)
737 |(% colspan="3" %)The full scale of options 1~~7 corresponds to F3.11
738 |(% rowspan="2" %)**F3.11**|(% colspan="2" %)Digital setting of torque upper limit in torque control|Default|150.0%
739 |(% colspan="2" %)Setting range|(% colspan="2" %)-200.0%~~200.0%
740
741 F3.10 is used to select the torque upper limit setting source in the torque control mode. When setting by analog, 100% of analog input setting corresponds to F3.11, and 100% of setting corresponds to AC drive matching motor rated torque.
742
743 (% class="table-bordered" %)
744 |(% rowspan="2" %)**F3.12**|Forward maximum frequency of torque control|Default|50.00Hz
745 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10)
746 |(% rowspan="2" %)**F3.13**|Reverse maximum frequency of torque control|Default|50.00Hz
747 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10) 
748
749 Set the maximum forward or reverse running frequency of the AC drive in torque control mode.
750
751 (% class="table-bordered" %)
752 |(% rowspan="2" %)**F3.14**|Acceleration time of torque control|Default|0.00s
753 |Setting range|(% colspan="2" %)0.00s~~65000s
754 |(% rowspan="2" %)**F3.15**|Deceleration time of torque control|Default|0.00s
755 |Setting range|(% colspan="2" %)0.00s~~65000s 
756
757 Set the frequency acceleration/deceleration time of the AC drive in torque control mode.
758
759 (% class="table-bordered" %)
760 |(% rowspan="2" %)**F3.16**|Torque stiffness coefficient|Default|100.00%
761 |Setting range|(% colspan="2" %)10.0%~~120.0% 
762
763 In the torque control mode, when the set torque is small, this coefficient can be appropriately reduced to obtain a stable control effect, otherwise, the coefficient can be appropriately increased to obtain a stable control effect.
764
765 (% class="table-bordered" %)
766 |(% rowspan="2" %)**F3.17**|M axis current loop proportional gain|Default|2000
767 |Setting range|(% colspan="2" %)0~~60000 
768 |(% rowspan="2" %)**F3.18**|M axis current loop integral gain|Default|1300
769 |Setting range|(% colspan="2" %)0~~60000 
770 |(% rowspan="2" %)**F3.19**|T axis current loop proportional gain|Default|2000
771 |Setting range|(% colspan="2" %)0~~60000  
772 |(% rowspan="2" %)**F3.20**|T axis current loop integral gain|Default|1300
773 |Setting range|(% colspan="2" %)0~~60000  
774
775 The current loop control parameters in the MT coordinate system and the synchronous motor dq coordinate system will be automatically identified after complete parameter identification, and generally do not need to be modified.
776
777 The bandwidth of the current loop directly determines the response speed of the electromagnetic torque. If the adjustment parameters are too strong, the current loop will be out of adjustment, causing the entire control loop to oscillate; when the current oscillates and torque fluctuations are large, you can manually adjust this group of parameters to improve the effect .
778
779 (% class="table-bordered" %)
780 |(% rowspan="3" %)**F3.21**|(% colspan="2" %)The speed loop integral separation|Default|0
781 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
782 |1|(% colspan="2" %)Valid
783
784 (% class="table-bordered" %)
785 |(% rowspan="2" %)**F3.24**|Torque control static friction compensation coefficient|Default|100
786 |Setting range|(% colspan="2" %)100~~300
787
788 (% class="table-bordered" %)
789 |(% rowspan="2" %)**F3.25**|Torque mode friction compensation time|Default|0
790 |Setting range|(% colspan="2" %)0~~100s
791
792 During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
793
794 = 6.5 F4 group v/f control parameters =
795
796 This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
797
798 V/F control is suitable for general loads such as fans and water pumps, or applications where one AC drive has multiple motors, or the power of the AC drive is one level lower or two levels higher than the motor power.
799
800 (% class="table-bordered" %)
801 |(% rowspan="7" %)**F4.00**|(% colspan="2" %)V/F curve setting|Default|0
802 |(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Linear V/F
803 |1|(% colspan="2" %)Multi-point V/F
804 |2|(% colspan="2" %)Square V/F
805 |3~~9|(% colspan="2" %)Reserved
806 |10|(% colspan="2" %)V/F complete separation
807 |11|(% colspan="2" %)V/F half separation
808
809 For fans and pumps, you can choose square V/F control.
810
811 Common VF control method
812
813 0: Straight line V/F curve. Suitable for ordinary constant torque load.
814
815 1: Multi-point V/F curve. Suitable for special loads such as dehydrators and centrifuges.
816
817 2: Square V/F curve. Suitable for centrifugal loads such as fans and pumps.
818
819 VF separation control method
820
821 10: VF complete separation mode. At this time, the output voltage is set separately according to the setting mode of F4.13 (VF separation voltage source).
822
823 11: VF semi-separated mode.
824
825 In this case, V and F are proportional, and the voltage source is only used to adjust the slope of V/F. At this time, the relationship between V and F is related to the rated voltage and rated frequency of the motor set in group F2. If the voltage source input is X (X is a value of 0~~100%), then: V/F=2 * X * (motor rated voltage)/(motor rated frequency)
826
827 (% class="table-bordered" %)
828 |(% rowspan="2" %)**F4.01**|Torque boost|Default|Model dependent
829 |Setting Range|(% colspan="2" %)0.0%~~30%  
830 |(% rowspan="2" %)**F4.02**|Cut-off frequency of torque boost|Default|50.00Hz
831 |Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequencyF0.10
832
833 In order to compensate the low-frequency torque characteristics of V/F control, some boost compensation is made for the AC drive output voltage at low frequency.
834
835 If the torque boost is set too large, the motor will easily overheat and the AC drive will easily overcurrent. Generally, the torque boost should not exceed 8.0%. Effective adjustment of this parameter can effectively avoid overcurrent during starting. For larger loads, it is recommended to increase this parameter, and reduce this parameter setting when the load is lighter. When the torque boost is set to 0.0, the AC drive is automatic torque boost. Torque boost torque cut-off frequency: below this frequency, the torque boost torque is valid, if the set frequency is exceeded, the torque boost is invalid, as shown in Figure 6.6.
836
837 (((
838 Output frequency
839
840 (% style="text-align:center" %)
841 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a72975cd3987dca.png]]
842 )))
843
844 Figure 6-5-1 Schematic diagram of manual torque boost
845
846 (% class="table-bordered" %)
847 |(% rowspan="2" %)**F4.03**|Multipoint V/F frequency 1|Default|3.00Hz
848 |Setting Range|(% colspan="2" %)0.00Hz~~F4.05 
849 |(% rowspan="2" %)**F4.04**|Multipoint V/F voltage 1|Default|10.0%
850 |Setting Range|(% colspan="2" %)0.0%~~100.0%
851 |(% rowspan="2" %)**F4.05**|Multipoint V/F frequency 2|Default|5.00Hz
852 |Setting Range|(% colspan="2" %)F4.03~~F4.07 
853 |(% rowspan="2" %)**F4.06**|Multipoint V/F voltage 2|Default|15.0%
854 |Setting Range|(% colspan="2" %)0.0%~~100.0%
855 |(% rowspan="2" %)**F4.07**|Multipoint V/F frequency 3|Default|8.00Hz
856 |Setting Range|(% colspan="2" %)F4.05~~Motor rated frequency(F2.04)
857 |(% rowspan="2" %)**F4.08**|Multipoint V/F voltage 3|Default|22.0%
858 |Setting Range|(% colspan="2" %)0.0%~~100.0%
859
860 Six parameters F4.03~~F4.08 define multi-segment V/F curve. The set value of the V/F curve is usually set according to the load characteristics of the motor. Note: V1<V2<V3, F1<F2<F3. Setting the voltage too high at low frequency may cause the motor to overheat or even burn, and the AC drive may over-current stall or over-current
861
862 protection.
863
864 (% style="text-align:center" %)
865 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_f550fcd15ecbb3b8.png]]
866
867 Figure 6-5-2 Schematic diagram of V/F curve setting
868
869 (% class="table-bordered" %)
870 |(% rowspan="2" %)**F4.09**|V/F slip compensation|Default|0.0%
871 |Setting Range|(% colspan="2" %)0%~~200.0%
872
873 Effective for V/F control. Setting this parameter can compensate for the slip caused by the load during V/F control, and reduce the change in motor speed with load changes during V/F control. Generally 100% corresponds to the rated slip when the motor is loaded with rated load. The slip coefficient can be adjusted according to the following principles: when the load is rated load and the slip compensation coefficient is set to 100%, the speed of the motor with the inverter is basically close to the given speed.
874
875 (% class="table-bordered" %)
876 |(% rowspan="2" %)**F4.10**|V/F over-excitation gain|Default|0
877 |Setting Range|(% colspan="2" %)0~~200
878
879 The function of the VF overexcitation gain function is to suppress the rise of the bus voltage during the deceleration of the AC drive, and to prevent the bus voltage from exceeding the overvoltage protection limit value and causing an overvoltage fault. The greater the overexcitation gain, the stronger the suppression effect. The setting instructions are as follows:
880
881 ~1. Generally, the overexcitation gain should be set to 0 when the inertia is small, and the overexcitation gain should be appropriately increased when the inertia is large.
882
883 2. If there is a braking resistor, please set the overexcitation gain to 0
884
885 (% class="table-bordered" %)
886 |(% rowspan="2" %)**F4.11**|V/F oscillation suppression gain|Default|Model dependent
887 |Setting Range|(% colspan="2" %)0~~100
888
889 Please select this gain as 0 when the motor has no oscillation. Only when the motor obviously oscillates and cannot run normally, increase the gain appropriately. The larger the gain, the more obvious the suppression of oscillation. When using the oscillation suppression function, it is required that the motor rated current and no-load current parameter settings have little deviation from the actual values. The method of selecting the gain is to choose as small as possible under the premise of effectively suppressing the oscillation, so as not to have too much influence on the VF operation.
890
891 (% class="table-bordered" %)
892 |(% rowspan="11" %)**F4.12**|(% colspan="2" %)Voltage source for V/F separation|Default|0
893 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting(F4.14) 
894 |1|(% colspan="2" %)AI1
895 |2|(% colspan="2" %)AI2
896 |3|(% colspan="2" %)Reserved
897 |4|(% colspan="2" %)Reserved
898 |5|(% colspan="2" %)Multi-speed instructions
899 |6|(% colspan="2" %)Simple PLC
900 |7|(% colspan="2" %)PID
901 |8|(% colspan="2" %)Communication setting
902 |(% colspan="3" %)(100% corresponds to the rated motor voltage)
903
904 Define the voltage source for VF separation. The output voltage can come from digital setting (F4.13), or from analog input channel, multi-speed command, PLC, PID or communication setting. When using non-digital setting of output voltage, 100% of the input setting corresponds to the rated voltage of the motor, and the absolute value of the input setting is taken as the effective setting value.
905
906 0: Digital setting (F4.13); The voltage is directly set through F4.13.
907
908 1: AI1 2: AI2 voltage is determined by analog input terminal, AI input 0~~100% corresponds to output voltage 0V~~rated voltage of motor.
909
910 4: Reserved
911
912 5: Multi-speed instructions
913
914 When the voltage source is multi-speed, you need to set the F4 group "input terminal" and FC group "multi-speed and PLC" parameters to determine the corresponding relationship between the given signal and the given voltage (100% corresponds to the rated motor voltage).
915
916 6: Simple PLC
917
918 When the voltage source is a simple PLC, you need to set the FC group "multi-speed and PLC" parameters to determine the given output voltage (100% corresponds to the rated voltage of the motor).
919
920 7: PID
921
922 Generate output voltage according to PID closed loop. For details, please refer to the introduction of FA group PID.
923
924 8: Communication setting
925
926 Refers to the voltage given by the host computer through communication (100% corresponds to the rated voltage of the motor).
927
928 (% class="table-bordered" %)
929 |(% rowspan="2" %)**F4.13**|Voltage digital setting for V/F separation|Default|0V
930 |Setting Range|(% colspan="2" %)0V~~F2.02
931
932 When the voltage source is digital setting, this value is directly used as the target value of the output voltage.
933
934 (% class="table-bordered" %)
935 |(% rowspan="2" %)**F4.14**|Voltage rise time of separation|Default|0.0s
936 |Setting Range|(% colspan="2" %)0.0s~~1000.0s
937
938 VF separation rise time refers to the time required for the output voltage to change from 0V to the rated voltage of the motor.
939
940 As Figure 6-5-3:
941
942 (((
943 (% style="text-align:center" %)
944 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d312ba31a6b637aa.png]]
945 )))
946
947 Figure 6-5-3 Schematic diagram of V/F separation
948
949 (% class="table-bordered" %)
950 |(% rowspan="2" %)**F4.16**|Auto voltage regulation (AVR)|Default|1
951 |Setting Range|(% colspan="2" %)(((
952 0:Invalid
953
954 1:Only valid during deceleration
955
956 2:Only valid during acceleration
957
958 3:Valid
959 )))
960
961 According to the actual use, select the situation where the AVR function is enabled.
962
963 = 6.6 F5 group input terminals =
964
965 The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
966
967 (% class="table-bordered" %)
968 |**F5.00**|DI1 terminal function selection|Default|1(Forward Running)
969 |**F5.01**|DI2 terminal function selection|Default|2(Reverse Running)
970 |**F5.02**|DI3 terminal function selection|Default|9(Reset Faults)
971 |**F5.03**|DI4 terminal function selection|Default|12(Multi-speed instruction terminal 1)
972 |**F5.04**|DI5 terminal function selection|Default|13(Multi-speed instruction terminal 2)
973 |**F5.05**|DI6 terminal function selection|Default|0
974 |**F5.06~~F5.09**|(% colspan="3" %)Reserved
975 |**F5.10**|VDI terminal function selection|Default|0
976
977 These parameters are used to set the corresponding function of the digital multi-function input terminals
978
979 (% class="table-bordered" %)
980 |(% style="width:121px" %)**Set Value**|(% style="width:540px" %)**Function**|(% style="width:829px" %)**Description**
981 |(% style="width:121px" %)0|(% style="width:540px" %)No function|(% style="width:829px" %)The AC drive will not operate even if a signal is input. The unused terminals can be set to have no function to prevent malfunction.
982 |(% style="width:121px" %)1|(% style="width:540px" %)Forward Running(FWD)|(% rowspan="2" style="width:829px" %)Control the forward and reverse rotation of the inverter through external terminals.
983 |(% style="width:121px" %)2|(% style="width:540px" %)Reverse Running(REV)
984 |(% style="width:121px" %)3|(% style="width:540px" %)Three-wire operation control|(% style="width:829px" %)Use this terminal to determine that the inverter operating mode is three-wire control mode. For details, please refer to F5.16 three-wire control mode function code introduction.
985 |(% style="width:121px" %)4|(% style="width:540px" %)Forward point movement (FJOG)|(% rowspan="2" style="width:829px" %)FJOG is jog forward running, RJOG is jog reverse running. Refer to the detailed description of F8.00, F8.01, F8.02 function codes for frequency and jog acceleration/deceleration time during jog operation.
986 |(% style="width:121px" %)5|(% style="width:540px" %)Reverse point movement(RJOG)
987 |(% style="width:121px" %)6|(% style="width:540px" %)Terminal UP|(% rowspan="2" style="width:829px" %)When the frequency is given by the external terminal, modify the frequency increase command and decrease command. When the frequency source is set to digital setting, the set frequency can be adjusted up and down.
988 |(% style="width:121px" %)7|(% style="width:540px" %)Terminal DOWN
989 |(% style="width:121px" %)8|(% style="width:540px" %)Free stopping|(% style="width:829px" %)(((
990 The inverter blocks the output, and the motor stopping process is not controlled by the inverter. For large inertia loads and when there is no requirement for stopping time, the method is often adopted.
991
992 This method has the same meaning as the free stop described in F1.10.
993 )))
994 |(% style="width:121px" %)9|(% style="width:540px" %)Reset Faults|(% style="width:829px" %)External fault reset function. It has the same function as the RESET key on the keyboard. Use this function to realize remote fault reset.
995 |(% style="width:121px" %)10|(% style="width:540px" %)Run pause|(% style="width:829px" %)The inverter decelerates to stop, but all operating parameters are in the memory state. Such as PLC parameters, swing frequency parameters, PID parameters. After this signal disappears, the inverter will resume running to the state before stopping.
996 |(% style="width:121px" %)11|(% style="width:540px" %)External faults normally open input|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
997 |(% style="width:121px" %)12|(% style="width:540px" %)Multi-speed instruction terminal 1|(% rowspan="4" style="width:829px" %)(((
998 A total of 16-speed settings can be achieved through the digital state combination of these four terminals.
999
1000 See attached sheet 1 for detailed combination.
1001 )))
1002 |(% style="width:121px" %)13|(% style="width:540px" %)Multi-speed instruction terminal 2
1003 |(% style="width:121px" %)14|(% style="width:540px" %)Multi-speed instruction terminal 3
1004 |(% style="width:121px" %)15|(% style="width:540px" %)Multi-speed instruction terminal 4
1005 |(% style="width:121px" %)16|(% style="width:540px" %)Terminal 1 for acceleration/deceleration time selection|(% rowspan="2" style="width:829px" %)Four types of acceleration and deceleration time can be selected through the combination of the digital states of these two terminals. See attached sheet 2 for detailed combination.
1006 |(% style="width:121px" %)17|(% style="width:540px" %)Terminal 2 for acceleration/deceleration time selection
1007 |(% style="width:121px" %)18|(% style="width:540px" %)Frequency source switchover(terminal and keypad)|(% style="width:829px" %)(((
1008 When the frequency source selection (F0.07 ones place) is set to 2, the main frequency source X and auxiliary frequency source Y are switched through this terminal.
1009
1010 When the frequency source selection (F0.07 ones place) is set to 3, this terminal is used to switch between the main frequency source X and the main and auxiliary calculation results.
1011
1012 When the frequency source selection (F0.07 ones place) is set to 4, use this terminal to switch between the auxiliary frequency source Y and the main and auxiliary calculation results
1013 )))
1014 |(% style="width:121px" %)19|(% style="width:540px" %)UP/DOWN setting clear(terminal and keypad)|(% style="width:829px" %)When the frequency source is a digital frequency setting, this terminal can be used to clear the frequency value changed by UP/DOWN and restore the reference frequency to the value set by F0.08.
1015 |(% style="width:121px" %)20|(% style="width:540px" %)Command source switchover terminal|(% style="width:829px" %)(((
1016 When the command source (F0.01) is set to 1, this terminal can be used to switch between terminal control and keyboard control.
1017
1018 When the command source (F0.01) is set to 2, the communication control and keyboard control can be switched through this terminal.
1019 )))
1020 |(% style="width:121px" %)21|(% style="width:540px" %)Acceleration/deceleration prohibited|(% style="width:829px" %)Ensure that the inverter is not affected by external signals (except for the stop command) and maintain the current output frequency.
1021 |(% style="width:121px" %)22|(% style="width:540px" %)PID pause|(% style="width:829px" %)PID is temporarily invalid and the inverter maintains the current frequency output.
1022 |(% style="width:121px" %)23|(% style="width:540px" %)PLC status reset|(% style="width:829px" %)The PLC pauses during execution, and can be restored to the initial state of the simple PLC through this terminal when it is running again.
1023 |(% style="width:121px" %)24|(% style="width:540px" %)Swing pause|(% style="width:829px" %)The inverter outputs at the central frequency. The swing frequency is paused.
1024 |(% style="width:121px" %)25|(% style="width:540px" %)Counter input|(% style="width:829px" %)The input terminal for counting pulses.
1025 |(% style="width:121px" %)26|(% style="width:540px" %)Counter reset|(% style="width:829px" %)Clear the counter status.
1026 |(% style="width:121px" %)27|(% style="width:540px" %)Length count input|(% style="width:829px" %)The input terminal for length count.
1027 |(% style="width:121px" %)28|(% style="width:540px" %)Length reset|(% style="width:829px" %)Clear the length.
1028 |(% style="width:121px" %)29|(% style="width:540px" %)Torque control prohibited|(% style="width:829px" %)The inverter is prohibited from torque control mode.
1029 |(% style="width:121px" %)30|(% style="width:540px" %)Reserved|(% style="width:829px" %)Reserved
1030 |(% style="width:121px" %)31|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1031 |(% style="width:121px" %)32|(% style="width:540px" %)Immediate DC braking|(% style="width:829px" %)When this terminal is valid, the inverter directly switches to the DC braking state
1032 |(% style="width:121px" %)33|(% style="width:540px" %)External faults normally closed input|(% style="width:829px" %)When the external fault signal is sent to the inverter, the inverter reports a fault and stops.
1033 |(% style="width:121px" %)34|(% style="width:540px" %)Frequency setting effect terminal|(% style="width:829px" %)If the function of this terminal is set, when the frequency is modified, the effective time of the modification is controlled by this terminal
1034 |(% style="width:121px" %)35|(% style="width:540px" %)Reverse PID action direction|(% style="width:829px" %)If this terminal is valid, the PID action direction is opposite to the direction set by F9.03
1035 |(% style="width:121px" %)36|(% style="width:540px" %)External stop terminal 1|(% style="width:829px" %)During keyboard control, this terminal can be used to stop, which is equivalent to the STOP key on the keypad
1036 |(% style="width:121px" %)37|(% style="width:540px" %)Command source switchover terminal 1|(% style="width:829px" %)Used to switch between terminal control and communication control. When this terminal is valid if F0.02 is set to terminal control, it will switch to communication control; if F0.02 is set to communication control, it will switch to terminal control.
1037 |(% style="width:121px" %)38|(% style="width:540px" %)PID integral pause|(% style="width:829px" %)If this terminal is valid, the PID integral function is suspended, but the proportional regulation and differential regulation still function.
1038 |(% style="width:121px" %)39|(% style="width:540px" %)Frequency source X and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source X is replaced by the preset frequency (F0.08)
1039 |(% style="width:121px" %)40|(% style="width:540px" %)Frequency source Y and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source Y is replaced by the preset frequency (F0.08)
1040 |(% style="width:121px" %)41|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1041 |(% style="width:121px" %)42|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1042 |(% style="width:121px" %)43|(% style="width:540px" %)PID parameter switchover terminal|(% style="width:829px" %)When F9.18 (PID parameter switching condition) is DI terminal, when this terminal is valid, PID uses F9.15~~F9.17 parameters. When the terminal is invalid, use F9.05~~F9.07 parameters
1043 |(% style="width:121px" %)44|(% style="width:540px" %)User-defined fault 1|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1044 |(% style="width:121px" %)45|(% style="width:540px" %)User-defined fault 2|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1045 |(% style="width:121px" %)46|(% style="width:540px" %)Speed control/torque control switchover|(% style="width:829px" %)Switch the inverter to run in torque control or speed control mode. If this terminal is invalid, it runs in the mode defined by F3.09 (speed/torque control mode), and if it is valid, it switches to the other mode.
1046 |(% style="width:121px" %)47|(% style="width:540px" %)Emergency stop|(% style="width:829px" %)If this terminal is valid, the inverter will stop at the fastest speed
1047 |(% style="width:121px" %)48|(% style="width:540px" %)External stopping terminal 22|(% style="width:829px" %)Under any control mode, this terminal can be used to stop, and stop according to deceleration time 4
1048 |(% style="width:121px" %)49|(% style="width:540px" %)Deceleration DC braking|(% style="width:829px" %)If this terminal is valid, the inverter will first decelerate to the start frequency of stop DC braking and then switch to DC braking state
1049 |(% style="width:121px" %)50|(% style="width:540px" %)Clear the current running time|(% style="width:829px" %)If this terminal is valid, the inverter's current running timing time will be cleared, and this function will be used for timing running (F8.42).
1050
1051 Attached sheet: Multi-speed function description
1052
1053 (% class="table-bordered" %)
1054 |**K4**|**K3**|**K2**|**K1**|**Set Frequency**|**Related Parameter**
1055 |OFF|OFF|OFF|OFF|Multistage Speed0|FD.00
1056 |OFF|OFF|OFF|ON|Multistage Speed1|FD.01
1057 |OFF|OFF|ON|OFF|Multistage Speed2|FD.02
1058 |OFF|OFF|ON|ON|Multistage Speed3|FD.03
1059 |OFF|ON|OFF|OFF|Multistage Speed4|FD.04
1060 |OFF|ON|OFF|ON|Multistage Speed5|FD.05
1061 |OFF|ON|ON|OFF|Multistage Speed6|FD.06
1062 |OFF|ON|ON|ON|Multistage Speed7|FD.07
1063 |ON|OFF|OFF|OFF|Multistage Speed8|FD.08
1064 |ON|OFF|OFF|ON|Multistage Speed9|FD.09
1065 |ON|OFF|ON|OFF|Multistage Speed10|FD.10
1066 |ON|OFF|ON|ON|Multistage Speed11|FD.11
1067 |ON|ON|OFF|OFF|Multistage Speed12|FD.12
1068 |ON|ON|OFF|ON|Multistage Speed13|FD.13
1069 |ON|ON|ON|OFF|Multistage Speed14|FD.14
1070 |ON|ON|ON|ON|Multistage Speed15|FD.15
1071
1072 Attached sheet: description of acceleration and deceleration time selection
1073
1074 (% class="table-bordered" %)
1075 |**Terminal 2**|**Terminal 1**|**Selection of acceleration/deceleration time**|**Related Parameter**
1076 |OFF|OFF|Acceleration/Deceleration Time1|F0.18. F0.19
1077 |OFF|ON|Acceleration/Deceleration Time2|F8.03. F8.04
1078 |ON|OFF|Acceleration/Deceleration Time3|F8.05. F8.06
1079 |ON|ON|Acceleration/Deceleration Time4|F8.07. F8.08
1080
1081 (% class="table-bordered" %)
1082 |(% rowspan="2" %)**F5.15**|DI filter time|Default|0.010s
1083 |Setting range|(% colspan="2" %)0.000s~~1.000s 
1084
1085 Set the sensitivity of the DI terminal. If the digital input terminal is susceptible to interference and cause malfunction, you can increase this parameter to increase the anti-interference ability, but cause the sensitivity of the DI terminal to decrease.
1086
1087 (% class="table-bordered" %)
1088 |(% rowspan="5" %)**F5.16**|(% colspan="2" %)Terminal command mode|Default|0
1089 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)Two-line mode 1
1090 |1|(% colspan="2" %)Two-line mode 2
1091 |2|(% colspan="2" %)Three-line mode 1
1092 |3|(% colspan="2" %)Three-line mode 2
1093
1094 This parameter defines four different ways to control the operation of the inverter through external terminals.
1095
1096 0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1097
1098 1: Two-wire mode 2: REV is the enable terminal when using this mode. The direction is determined by the state of the FWD.
1099
1100 2: Three-line mode 1: This mode Din is the enable terminal, and the direction is controlled by FWD and REV respectively.
1101
1102 But the pulse is valid, it must be completed by disconnecting the Din terminal signal when stopping.
1103
1104 Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1105
1106 3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1107
1108 Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1109
1110 (% class="table-bordered" %)
1111 |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1112 |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
1113
1114 Frequency change rate while using terminal UP/DOWN function
1115
1116 (% class="table-bordered" %)
1117 |(% rowspan="2" %)**F5.18**|AI1 minimum input|Default|0.00V
1118 |Setting range|(% colspan="2" %)0.00V~~F5.15  
1119 |(% rowspan="2" %)**F5.19**|Percentage rate of AI1 minimum input|Default|0.0%
1120 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1121 |(% rowspan="2" %)**F5.20**|AI1 maximum input|Default|10.00V
1122 |Setting range|(% colspan="2" %)F5.18~~10.00V  
1123 |(% rowspan="2" %)**F5.21**|Percentage rate of AI1 maximum input|Default|100.0%
1124 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1125 |(% rowspan="2" %)**F5.22**|AI1 filter time|Default|0.10s
1126 |Setting range|(% colspan="2" %)0.00s~~10.00s
1127
1128 The above function code defines the relationship between the analog input voltage and the set value represented by the analog input. When the analog input voltage exceeds the set maximum input range, the other part will be calculated as the maximum input. When the analog input voltage exceeds the set minimum input The range, the outside part will be calculated based on the AI minimum input.
1129
1130 When analog input is current input, 1mA current is equivalent to 0.5V voltage. In different applications, the nominal value corresponding to 100% of the analog setting is different. For details, please refer to the description of each application part.
1131
1132 The following figures illustrate several settings:
1133
1134 (% style="text-align:center" %)
1135 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_18e4cbe6e1292696.png]]
1136
1137 Figure 6-6-1 Correspondence between analog reference and setting
1138
1139 (% class="table-bordered" %)
1140 |(% rowspan="2" %)**F5.23**|AI2 minimum input|Default|0.00V
1141 |Setting range|(% colspan="2" %)0.00V~~F5.25  
1142 |(% rowspan="2" %)**F5.24**|Percentage rate of AI2 minimum input|Default|0.0%
1143 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1144 |(% rowspan="2" %)**F5.25**|AI2 maximum input|Default|10.00V
1145 |Setting range|(% colspan="2" %)F5.23~~10.00V  
1146 |(% rowspan="2" %)**F5.26**|Percentage rate of AI2 maximum input|Default|100.0%
1147 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1148 |(% rowspan="2" %)**F5.27**|AI2 filter time|Default|0.10s
1149 |Setting range|(% colspan="2" %)0.00s~~10.00s
1150
1151 The function of AI2 is similar to the setting method of AI1.
1152
1153 (% class="table-bordered" %)
1154 |(% rowspan="2" %)**F5.28**|PULSE INPUT minimum input|Default|0.00kHz
1155 |Setting range|(% colspan="2" %)0.00kHz~~F5.30 
1156 |(% rowspan="2" %)**F5.29**|Percentage rate of PULSE INPUT minimum input|Default|0.0%
1157 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1158 |(% rowspan="2" %)**F5.30**|PULSE INPUT maximum input|Default|50.00kHz
1159 |Setting range|(% colspan="2" %)F5.28~~50.00kHz  
1160 |(% rowspan="2" %)**F5.31**|Percentage rate of PULSE INPUT maximum input|Default|100.0%
1161 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1162 |(% rowspan="2" %)**F5.32**|PULSE INPUT filter time|Default|0.10s
1163 |Setting range|(% colspan="2" %)0.00s~~10.00s
1164
1165 This group of function codes defines the corresponding relationship when pulse is used as the frequency setting method. Pulse frequency input can only be input through DI6 channel. The application of this group of functions is similar to that of AI1.
1166
1167 (% class="table-bordered" %)
1168 |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1169 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1170 |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
1171 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1172 |(% rowspan="2" %)**F5.35**|DI2 enable delay time|Default|0.0s
1173 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1174 |(% rowspan="2" %)**F5.36**|DI2 disable delay time|Default|0.0s
1175 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1176
1177 Set the delay time from DI terminal status change to inverter response.
1178
1179 Currently only DI1\DI2 has the function of setting the delay time.
1180
1181 (% class="table-bordered" %)
1182 |(% rowspan="8" %)**F5.37**|(% colspan="2" %)DI valid mode selection 1|Default|00000
1183 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI1 terminal valid state setting
1184 |0|(% colspan="2" %)High level
1185 |1|(% colspan="2" %)Low Level
1186 |Tens Place|(% colspan="2" %)DI2 terminal valid state setting(0~~1,as above)
1187 |Hundreds Place|(% colspan="2" %)DI3 terminal valid state setting(0~~1,as above)
1188 |Thousands Place|(% colspan="2" %)DI4 terminal valid state setting(0~~1,as above)
1189 |Ten Thousands Place|(% colspan="2" %)DI5 terminal valid state setting(0~~1,as above)
1190 |(% rowspan="8" %)**F5.38**|(% colspan="2" %)DI valid mode selection 2|Default|00000
1191 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI6 terminal valid state setting
1192 |0|(% colspan="2" %)High level
1193 |1|(% colspan="2" %)Low Level
1194 |Tens Place|(% colspan="2" %)Reserved
1195 |Hundreds Place|(% colspan="2" %)Reserved
1196 |Thousands Place|(% colspan="2" %)Reserved
1197 |Ten Thousands Place|(% colspan="2" %)Reserved
1198
1199 Define the effective state setting of the input terminal.
1200
1201 High level:The connection between DI terminal and COM is valid, while disconnection is invalid.
1202
1203 Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1204
1205 = 6.7 F6 group output terminals =
1206
1207 The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1208
1209 (% class="table-bordered" %)
1210 |(% rowspan="3" %)**F6.00**|(% colspan="2" %)FM terminal output mode|Default|1
1211 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Pulse Output(FMP)(Reserved)  
1212 |1|(% colspan="2" %)Open-collector output(FMR)  
1213
1214 The FM terminal is a programmable multiplexing terminal. It can be used as an open collector output terminal (FMR). Refer to F6.01 for FMR function.
1215
1216 FMP function needs hardware support
1217
1218 (% class="table-bordered" %)
1219 |**F6.01**|FMR function|Default|0
1220 |**F6.02**|Relay 1 function|Default|2
1221 |**F6.03**|Relay 2 function|Default|1
1222 |**F6.06**|VDO Output Selection|Default|0
1223
1224 **The functions of the multi-function output terminals are as follows:**
1225
1226 (% class="table-bordered" %)
1227 |(% style="width:108px" %)**Set Value**|(% style="width:469px" %)**Function**|(% style="width:912px" %)**Description**
1228 |(% style="width:108px" %)0|(% style="width:469px" %)No output|(% style="width:912px" %)The output terminal has no function  
1229 |(% style="width:108px" %)1|(% style="width:469px" %)AC Drive running|(% style="width:912px" %)It means that the inverter is running and there is an output frequency (it can be zero) and the ON signal is output at this time.
1230 |(% style="width:108px" %)2|(% style="width:469px" %)Fault output(stop)|(% style="width:912px" %)When the inverter fails and it stops, it outputs ON signal.
1231 |(% style="width:108px" %)3|(% style="width:469px" %)Frequency level detection FDT1 output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.08 and F8.09.
1232 |(% style="width:108px" %)4|(% style="width:469px" %)Frequency reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.21
1233 |(% style="width:108px" %)5|(% style="width:469px" %)Zero-speed running(no output at stop)|(% style="width:912px" %)The inverter runs and the output frequency is 0, and the ON signal is output.
1234 |(% style="width:108px" %)6|(% style="width:469px" %)Motor overload pre-warning|(% style="width:912px" %)Before the motor electronic thermal protection acts, it is judged according to the overload forecast value, and the ON signal is output after the forecast value is exceeded. Motor overload parameters are set in FA.00~~FA.02.
1235 |(% style="width:108px" %)7|(% style="width:469px" %)AC Drive overload pre-warning|(% style="width:912px" %)After checking that the inverter is overloaded, advance 10s before the protection occurs. Output ON signal.
1236 |(% style="width:108px" %)8|(% style="width:469px" %)Set count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.08, the ON signal is output.
1237 |(% style="width:108px" %)9|(% style="width:469px" %)Designated count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.09, the ON signal is output. Refer to the function description of FB group for counting function
1238 |(% style="width:108px" %)10|(% style="width:469px" %)Length reached|(% style="width:912px" %)When the actual length detected exceeds the length set by FB.05, the ON signal is output.
1239 |(% style="width:108px" %)11|(% style="width:469px" %)PLC cycle complete|(% style="width:912px" %)When the simple PLC runs a cycle, it outputs a pulse signal with a width of 250ms.
1240 |(% style="width:108px" %)12|(% style="width:469px" %)Accumulative running time reached|(% style="width:912px" %)When the accumulative running time of the inverter exceeds the time set by F8.17, it outputs ON signal.
1241 |(% style="width:108px" %)13|(% style="width:469px" %)Frequency limited|(% style="width:912px" %)When the set frequency exceeds the upper and lower frequency limits and the inverter output frequency reaches the upper and lower frequency limits, the ON signal is output.
1242 |(% style="width:108px" %)14|(% style="width:469px" %)Torque limited|(% style="width:912px" %)When the torque limit function is activated, the stall protection function automatically activates, automatically changes the output frequency, and outputs an ON signal to indicate that the output torque is limited. This output signal can be used to reduce the load or display an overload status signal on the monitoring device.
1243 |(% style="width:108px" %)15|(% style="width:469px" %)Ready for running|(% style="width:912px" %)The power supply of the main circuit and control circuit is established, the protection function of the inverter does not operate, and the inverter outputs ON signal when it is in an operational state.
1244 |(% style="width:108px" %)16|(% style="width:469px" %)AI1 larger than AI2|(% style="width:912px" %)When the value of analog input AI1 is greater than the other input AI2, the ON signal is output.
1245 |(% style="width:108px" %)17|(% style="width:469px" %)Frequency upper limit reached|(% style="width:912px" %)When the operating frequency reaches the upper limit frequency, the ON signal is output.
1246 |(% style="width:108px" %)18|(% style="width:469px" %)Frequency lower limit reached|(% style="width:912px" %)When the operating frequency reaches the lower limit frequency, the ON signal is output.
1247 |(% style="width:108px" %)19|(% style="width:469px" %)Undervoltage state output|(% style="width:912px" %)When the inverter is under voltage, it outputs ON signal.
1248 |(% style="width:108px" %)20|(% style="width:469px" %)Communication setting|(% style="width:912px" %)See the relevant description in the communication protocol.
1249 |(% style="width:108px" %)21|(% style="width:469px" %)Positioning completed (Reserved)|(% style="width:912px" %)Reserved
1250 |(% style="width:108px" %)22|(% style="width:469px" %)Positioning close (Reserved)|(% style="width:912px" %)Reserved
1251 |(% style="width:108px" %)23|(% style="width:469px" %)Zero-speed running 2(having output at stop)|(% style="width:912px" %)When the output frequency of the inverter is 0, the ON signal is output (also output when stopping).
1252 |(% style="width:108px" %)24|(% style="width:469px" %)Accumulative power-on time reached|(% style="width:912px" %)When F7.13 (accumulated power-on time of the inverter) exceeds the time set by F8.16, the ON signal is output.
1253 |(% style="width:108px" %)25|(% style="width:469px" %)Frequency level detection FDT2|(% style="width:912px" %)Please refer to the detailed description of function codes F8.28 and F8.39.
1254 |(% style="width:108px" %)26|(% style="width:469px" %)Frequency 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.30 and F8.31.
1255 |(% style="width:108px" %)27|(% style="width:469px" %)Frequency 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.32 and F8.33.
1256 |(% style="width:108px" %)28|(% style="width:469px" %)Current 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.38 and F8.30.
1257 |(% style="width:108px" %)29|(% style="width:469px" %)Current 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.40 and F8.41.
1258 |(% style="width:108px" %)30|(% style="width:469px" %)Timing reached|(% style="width:912px" %)When F8.42 (timing function selection) is valid, the inverter will output ON signal when the current running time reaches the set timing time.
1259 |(% style="width:108px" %)31|(% style="width:469px" %)AI1 input limit exceeded|(% style="width:912px" %)When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.45 (AI1 input protection lower limit), FM (FMR) outputs ON signal.
1260 |(% style="width:108px" %)32|(% style="width:469px" %)Offload|(% style="width:912px" %)Output ON signal when the inverter is in the off-load state
1261 |(% style="width:108px" %)33|(% style="width:469px" %)Running direction|(% style="width:912px" %)Output ON signal when inverter is running in reverse
1262 |(% style="width:108px" %)34|(% style="width:469px" %)Zero current detection|(% style="width:912px" %)Please refer to the detailed description of function codes F8.34 and F8.35.
1263 |(% style="width:108px" %)35|(% style="width:469px" %)Module temperature reached|(% style="width:912px" %)When F7.07 (IGBT module heatsink temperature) reaches the value of F8.47 (module temperature reached), output ON signal
1264 |(% style="width:108px" %)36|(% style="width:469px" %)Software overcurrent output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.36 and F8.37.
1265 |(% style="width:108px" %)37|(% style="width:469px" %)Lower limit frequency reached (non-operational)|(% style="width:912px" %)When the running frequency reaches the lower limit frequency, the ON signal is output (also output when stopping).
1266 |(% style="width:108px" %)38|(% style="width:469px" %)Fault output (continue operation)|(% style="width:912px" %)When the inverter fails, output ON signal
1267 |(% style="width:108px" %)39|(% style="width:469px" %)Reserved|(% style="width:912px" %)
1268 |(% style="width:108px" %)40|(% style="width:469px" %)This running time arrive|(% style="width:912px" %)
1269 |(% style="width:108px" %)41|(% style="width:469px" %)User-defined output 1|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.28~~F6.32 for details.
1270 |(% style="width:108px" %)42|(% style="width:469px" %)User-defined output 2|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.23~~F6.37 for details.
1271 |(% style="width:108px" %)43|(% style="width:469px" %)(((
1272 Timer output
1273 )))|(% style="width:912px" %)(((
1274 If the timer arrives, the VFD outputs ON signal
1275 )))
1276 |(% style="width:108px" %)44|(% style="width:469px" %)(((
1277 Forward running status
1278 )))|(% style="width:912px" %)(((
1279 If the VFD is running forward, output ON signal
1280 )))
1281 |(% style="width:108px" %)45|(% style="width:469px" %)(((
1282 Reverse running status
1283 )))|(% style="width:912px" %)(((
1284 If the VFD is running reverse, output ON signal
1285 )))
1286
1287 (% class="table-bordered" %)
1288 |F6.11|FMP(Pulse output terminal)output selection(Reserved)|Default|0
1289 |F6.12|AO1 function|Default|0
1290 |F6.13|AO2 function|Default|1
1291
1292 The standard output of analog output (zero offset is 0, gain is 1) is 0mA~~20mA (or 0V~~10V), and the FMP output range is from 0Hz to the setting of function code F5.09.
1293
1294 The range of the corresponding amount expressed is shown in the following Sheet:
1295
1296 (% class="table-bordered" %)
1297 |**Set value**|**Function**|**Range**
1298 |0|Running frequency|0~~Maximum output power
1299 |1|Set frequency|0~~Maximum output frequency
1300 |2|Output current|0~~2 times motor rated current
1301 |3|Output torque|0~~2 times motor rated torque
1302 |4|Output power|0~~2 times motor rated power
1303 |5|Output voltage|0~~1.2 times AC drive rated voltage
1304 |6|PULSE input|0.01kHz~~100.00kHz
1305 |7|AI1|0V~~10V
1306 |8|AI2|0V~~10V/0~~20mA
1307 |10|Length|0~~Maximum set length
1308 |11|Count value|0~~Maximum count value
1309 |12|Communication setting|-10000~~10000
1310 |13|Motor Speed|0~~Rotation speed corresponding to maximum output frequency
1311 |14|Output Current|0-1000A,as 0-10V
1312 0-1000V,as 0-10V
1313 |15|Output Voltage|0.0V~~1000.0V
1314
1315 (% class="table-bordered" %)
1316 |(% rowspan="2" %)**F6.14**|FMP output maximum frequency|Default|50.00kHz   
1317 |Setting range|(% colspan="2" %)0.01kHz~~100.00kHz   
1318
1319 When the FM terminal is selected as pulse output, the maximum frequency value of the pulse can be output.
1320
1321 (% class="table-bordered" %)
1322 |(% rowspan="2" %)**F6.15**|AO1 offset coefficient|Default|0.0%   
1323 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1324 |(% rowspan="2" %)**F6.16**|AO1 gain|Default|1.00   
1325 |Setting range|(% colspan="2" %)-10.00~~10.00
1326 |(% rowspan="2" %)**F6.17**|AO2 offset coefficient|Default|0.00%   
1327 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1328 |(% rowspan="2" %)**F6.18**|AO2 gain|Default|1.00   
1329 |Setting range|(% colspan="2" %)-10.00~~10.00
1330
1331 If the zero offset is represented by "b", the gain is represented by k, the actual output is represented by Y, and the standard output is represented by X, the actual output is Y=kX+b; AO1, A02 zero offset coefficient 100% corresponds to 10V (20mA). Standard output refers to the output 0V~~10V (20mA) corresponding to the analog output representing 0~~max. Generally used to correct the zero drift of analog output and the deviation of output amplitude. It can also be customized to any desired output curve: For example: if the analog output content is the operating frequency, and hope to output 8V (16mA) when the frequency is 0, and 3V (6mA) when the frequency is the maximum frequency, the gain should be set to " .0.50", the zero offset should be set to "80%".
1332
1333 (% class="table-bordered" %)
1334 |(% rowspan="2" %)**F6.19**|FMR connecting delay time|Default|0.0s
1335 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1336 |(% rowspan="2" %)**F6.20**|RELAY1 connecting delay time|Default|0.0s
1337 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1338 |(% rowspan="2" %)**F6.21**|RELAY2 connecting delay time|Default|0.0s
1339 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1340 |(% rowspan="2" %)**F6.22**|VDO connecting delay time|Default|0.0s
1341 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1342 |(% rowspan="2" %)**F6.23**|FMR disconnecting delay time|Default|0.0s
1343 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1344 |(% rowspan="2" %)**F6.24**|RELAY1 disconnecting delay time|Default|0.0s
1345 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1346 |(% rowspan="2" %)**F6.25**|RELAY2 disconnecting delay time|Default|0.0s
1347 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1348 |(% rowspan="2" %)**F6.26**|VDO disconnecting delay time|Default|0.0s
1349 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1350
1351 Set the delay time from the state change of the output terminal FMR, relay 1, relay 2, VDO to the output change.
1352
1353 (% class="table-bordered" %)
1354 |(% rowspan="8" %)**F6.27**|(% colspan="2" %)Output terminal valid state selection|Default|00000
1355 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)FMR valid state selection
1356 |0|(% colspan="2" %)Positive Logic
1357 |1|(% colspan="2" %)Negative Logic
1358 |Tens Place|(% colspan="2" %)RELAY1 valid state selection(0~~1,as above)
1359 |Hundreds Place|(% colspan="2" %)RELAY2 valid state selection(0~~1,as above)
1360 |Thousands Place|(% colspan="2" %)Reserved
1361 |Ten Thousands Place|(% colspan="2" %)Reserved
1362
1363 Define the positive and negative logic of output terminal FMR, relay 1, and relay 2.
1364
1365 Positive logic: the digital output terminal is valid when connected to the corresponding common terminal, but invalid when disconnected;
1366
1367 Inverse logic: the connection between the digital output terminal and the corresponding common terminal is invalid, and the disconnection is valid;
1368
1369 (% class="table-bordered" %)
1370 |(% rowspan="2" %)**F6.28**|(((
1371 User defined output
1372
1373 variability selection (EX)1
1374 )))|Default|00
1375 |Setting range|(% colspan="2" %)0~~49
1376
1377 This parameter is used to select the reference variable for custom output. Use the selected variable EX as the comparison object
1378
1379 (% class="table-bordered" %)
1380 |(% rowspan="2" %)**F6.29**|User defined comparison method 1|Default|00
1381 |Setting range|(% colspan="2" %)0~~14
1382
1383 The ones place selection comparison test mode, the variable selected by F6.28 is used as the comparison test object, and the comparison and test values are set by F6.31~~F6.32.
1384
1385 Tens place selects the output mode. False value output means output if the condition is not met, and no output if the condition is met; true value output means output if the condition is met, and no output if the condition is not met.
1386
1387 (% class="table-bordered" %)
1388 |(% rowspan="2" %)**F6.30**|User defined output dead zone 1|Default|0
1389 |Setting range|(% colspan="2" %)0~~65535
1390
1391 When the comparison test mode of F6.29 is set to be greater than or equal to or less than or equal to, F6.30 is used to define the processing dead zone value centered on the comparison value X1, and the processing dead zone is only for 1 and 2 of the F6.29 comparison test mode It has an effect, but no effect on 0, 3, and 4. For example, when F6.29 is set to 11, when EX increases from 0 upwards, the output is valid after increasing to greater than or equal to X1+F6.30; when EX decreases downward, after decreasing to less than or equal to X1.F6.30, The output is invalid.
1392
1393 (% class="table-bordered" %)
1394 |(% rowspan="2" %)**F6.31**|(((
1395 User-defined 1 output
1396
1397 comparison value X1
1398 )))|Default|0
1399 |Setting range|(% colspan="2" %)0~~65535
1400 |(% rowspan="2" %)**F6.32**|(((
1401 User-defined 1 output
1402
1403 comparison value X2
1404 )))|Default|0
1405 |Setting range|(% colspan="2" %)0~~65535
1406
1407 These two parameters are used to set the comparison value of the custom output.
1408
1409 The following is an example of using custom output:
1410
1411 When the set frequency is greater than or equal to 20.00HZ, the relay is closed;
1412
1413 The setting parameters are as follows: F6.02 = 41, F6.28 = 1, F6.29 = 11, F6.30 = 0, F6.31 = 2000;
1414
1415 2. The relay is required to close when the bus voltage is less than or equal to 500.0V; in order to avoid frequent relay actions when the detection voltage is 5.0V up and down from 500.0V, it is required to be treated as a dead zone in the range of (500.0-5.0) ~~ (500.0+5.0) .
1416
1417 The setting parameters are as follows: F6.02 = 41, F6.28 = 2, F6.29 = 01, F6.30 = 50, F6.31 = 5000;
1418
1419 When the inverter is required to reverse, the relay is closed:
1420
1421 The setting parameters are as follows: F6.02 = 41, F6.28 = 5, F6.29 = 14, F6.31 = 8, F6.32 = 8;
1422
1423 When AI1 input is required to be greater than 3.00V and less than or equal to 6.00V, the relay is closed:
1424
1425 The setting parameters are as follows: F6.02 = 41, F6.28 = 13, F6.29 = 13, F6.31 = 300, F6.32 = 600;
1426
1427 (% class="table-bordered" %)
1428 |(% rowspan="2" %)**F6.33**|(((
1429 User defined output
1430
1431 variability selection (EX)2
1432 )))|Default|00
1433 |Setting range|(% colspan="2" %)0~~49
1434
1435 (% class="table-bordered" %)
1436 |(% rowspan="2" %)**F6.34**|User defined comparison method 2|Default|00
1437 |Setting range|(% colspan="2" %)0~~14
1438
1439 (% class="table-bordered" %)
1440 |(% rowspan="2" %)**F6.35**|User defined output dead zone 1|Default|0
1441 |Setting range|(% colspan="2" %)0~~65535
1442
1443 (% class="table-bordered" %)
1444 |(% rowspan="2" %)**F6.36**|(((
1445 User-defined 2 output
1446
1447 comparison value X1
1448 )))|Default|0
1449 |Setting range|(% colspan="2" %)0~~65535
1450 |(% rowspan="2" %)**F6.37**|(((
1451 User-defined 2output
1452
1453 comparison value X2
1454 )))|Default|0
1455 |Setting range|(% colspan="2" %)0~~65535
1456
1457 For the second output, the parameter setting method is the same as F6.28~~F6.32.
1458
1459 = 6.8 F7 group keypad display =
1460
1461 (% class="table-bordered" %)
1462 |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1463 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
1464 |1|(% colspan="2" %)Upload local functional parameters to LCD keypad
1465 |2|(% colspan="2" %)Download functional parameters from LCD keypad to AC drive
1466
1467 Note: This function only supports LCD keyboard
1468
1469 (% class="table-bordered" %)
1470 |(% rowspan="7" %)**F7.01**|(% colspan="2" %)MF.K key function selection|Default|0
1471 |(% rowspan="6" %)Setting range|0|(% colspan="2" %)MF.K disabled
1472 |1|(% colspan="2" %)Switchover between keypad control and remote command control(terminal or communication)
1473 |2|(% colspan="2" %)Switchover between forward rotation and reverse rotation
1474 |3|(% colspan="2" %)Forward JOG
1475 |4|(% colspan="2" %)Reverse JOG
1476 |5|(% colspan="2" %)Menu mode switching
1477
1478 The MF.K key is the multi-function key. The function of the keyboard MF.K key can be defined through parameter settings. This key can be used to switch during stop and running.
1479
1480 0: When set to 0, this key has no function.
1481
1482 1: Switchover between keypad control and remote command control(terminal or communication). Refers to the switch of the command source, from the current command source to keyboard control (local operation). If the current command source is keyboard control, this command has no effect.
1483
1484 2: Switchover between forward rotation and reverse rotation
1485
1486 Switch the direction of the frequency command through the keyboard MF.K key. It is valid only in the operation panel command channel.
1487
1488 3: Forward jog
1489
1490 Realize forward jog (FJOG) by keyboard MF.K key.
1491
1492 4: Reverse jog
1493
1494 Reverse jog (RJOG) can be realized by keyboard MF.K key.
1495
1496 5: Menu mode switching
1497
1498 The menu mode switch is realized through the keyboard MF.K key.
1499
1500 (% class="table-bordered" %)
1501 |(% rowspan="3" %)**F7.02**|(% colspan="4" %)STOP/RESET key function|(% colspan="2" %)Default|(% colspan="2" %)1
1502 |(% colspan="3" rowspan="2" %)Setting range|0|(% colspan="4" %)STOP/RESET key enabled only in keypad control
1503 |1|(% colspan="4" %)STOP/RESET key enabled in any operation mode
1504 |(% rowspan="2" %)**F7.03**|(% colspan="5" %)LED display parameters 1 while running|(% colspan="2" %)Default|17
1505 |Setting range|(((
1506 0000
1507
1508 ~~FFFF
1509 )))|(% colspan="6" %)(((
1510 Bit00: Running frequency (Hz)
1511
1512 Bit01: Set frequency (Hz)
1513
1514 Bit02: DC bus voltage (V)
1515
1516 Bit03: Output voltage (V)
1517
1518 Bit04: Output current (A)
1519
1520 Bit05: Output power (kW)
1521
1522 Bit06: Output torque ~(%)
1523
1524 Bit07: DI input status
1525
1526 Bit08: DO output status
1527
1528 Bit09: AI1 power (V)
1529
1530 Bit10: AI2 power (V)
1531
1532 Bit11: Reserved
1533
1534 Bit12: Count value
1535
1536 Bit13: Length value
1537
1538 Bit14: Load speed display
1539
1540 Bit15: PID set value
1541
1542 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.03.
1543 )))
1544 |(% rowspan="2" %)**F7.04**|(% colspan="5" %)LED display parameters 2 while running|(% colspan="2" %)Default|0
1545 |Setting range|(((
1546 0000
1547
1548 ~~FFFF
1549 )))|(% colspan="6" %)(((
1550 Bit00: PID feedback
1551
1552 Bit01: PLC stage
1553
1554 Bit02: Feedback speed (0.1Hz)
1555
1556 Bit03: Reserved
1557
1558 Bit04: Remaining running time
1559
1560 Bit05: AI1 voltage before correction
1561
1562 Bit06: AI2 voltage before correction
1563
1564 Bit07: Reserved
1565
1566 Bit08: Linear speed
1567
1568 Bit09: Current power-on time
1569
1570 Bit10: Current running time
1571
1572 Bit11: Reserved
1573
1574 Bit12: Communication setting
1575
1576 Bit13: Reserved
1577
1578 Bit14: Main frequency X display
1579
1580 Bit15: Auxiliary frequency Y display
1581
1582 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.04
1583 )))
1584
1585 The running display parameters are used to set the status parameters that can be viewed when the inverter is running. Up to 32 state parameters can be viewed. Select the state parameters to be displayed according to the digits of the parameter values of F7.03 and F7.04, and the display sequence starts from the lowest bit of F7.03.
1586
1587 (% class="table-bordered" %)
1588 |(% rowspan="2" %)**F7.05**|(% colspan="5" %)LED display parameters while stopping|(% colspan="2" %)Default|33
1589 |(% colspan="2" %)Setting range|(((
1590 0000
1591
1592 ~~FFFF
1593 )))|(% colspan="5" %)(((
1594 Bit00: Set frequency (Hz)
1595 Bit01: DC bus voltage(V)
1596 Bit02: DI input status
1597 Bit03: DO output status
1598 Bit04: AI1 voltage (V)
1599 Bit05: AI2 voltage (V)
1600 Bit06: Reserved
1601 Bit07: Count value
1602 Bit08: Length value
1603 Bit09: PLC stage
1604 Bit10: Load speed display
1605 Bit11: PID set value
1606 Bit12: Reserved
1607
1608 Bit13: PID feedback value
1609
1610 If you need to display the above parameters while stopping, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.05
1611 )))
1612 |(% colspan="2" rowspan="2" %)**F7.06**|(% colspan="3" %)Load speed display coefficien|(% colspan="2" %)Default|(% colspan="2" %)1.0000
1613 |(% colspan="3" %)Setting range|(% colspan="4" %)0.0001~~6.5000
1614
1615 Correspond the output frequency of the inverter to the load speed through this parameter. Set when you need to display the load speed.
1616
1617 The specific calculation method is described in F7.12.
1618
1619 (% class="table-bordered" %)
1620 |(% rowspan="2" %)**F7.07**|Heatsink temperature of IGBT|Default|0
1621 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1622
1623 Displays the temperature of the IGBT module. The over-temperature protection value of IGBT module of different models may be different.
1624
1625 (% class="table-bordered" %)
1626 |(% rowspan="2" %)**F7.08**|Heatsink temperature of rectifier bridge|Default|0
1627 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1628
1629 Displays the temperature of the rectifier bridge. The over-temperature protection value of rectifier bridge of different models may be different.
1630
1631 (% class="table-bordered" %)
1632 |(% rowspan="2" %)**F7.09**|Accumulative running time|Default|0h
1633 |Setting range|(% colspan="2" %)0h~~65535h
1634
1635 Display the cumulative running time of the inverter so far. When this time reaches the set running time (F8.17), the multi-function digital output (12) of the inverter will act.
1636
1637 (% class="table-bordered" %)
1638 |(% rowspan="2" %)**F7.10**|(% colspan="2" %)Product Number|Default|-
1639 |(% colspan="2" %)Setting range|(% colspan="2" %)Product Number of AC Drive
1640 |(% rowspan="2" %)**F7.11**|(% colspan="2" %)Software Version|Default|
1641 |(% colspan="2" %)Setting range|(% colspan="2" %)Software Version of Control Board
1642 |(% rowspan="5" %)**F7.12**|(% colspan="2" %)Number of decimal places for load speed display|Default|0
1643 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)0 decimal places
1644 |1|(% colspan="2" %)1 decimal places
1645 |2|(% colspan="2" %)2 decimal places
1646 |3|(% colspan="2" %)3 decimal places
1647
1648 The load speed calculation method is: if the load speed display coefficient is 2.000, the load speed decimal point position is 2: 2 decimal points.
1649
1650 When the inverter is running: if the running frequency is 40.00 Hz, 4000*2.000 = 8000, and 2 decimal points display, the load speed is 80.00.
1651
1652 When the inverter is stopped: If the set frequency is 50.00 Hz, 5000*2.000 = 10000, and the load speed is 100.00 when displayed with 2 decimal points.
1653
1654 (% class="table-bordered" %)
1655 |(% rowspan="2" %)**F7.13**|Accumulative power-on time|Default|0h
1656 |Setting range|(% colspan="2" %)0h~~65535h
1657
1658 Display the cumulative power-on time of the inverter so far. When this time reaches the set power-on time (F8.17), the inverter's multi-function digital output (24) will act.
1659
1660 (% class="table-bordered" %)
1661 |(% rowspan="2" %)**F7.14**|Accumulative power consumption|Default|0
1662 |Setting range|(% colspan="2" %)0~~65535
1663
1664 Displays the cumulative power consumption of the inverter so far.
1665
1666 (% class="table-bordered" %)
1667 |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1668 |Setting range|(% colspan="2" %)-
1669
1670 = 6.9 F8 group auxiliary functions =
1671
1672 (% class="table-bordered" %)
1673 |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
1674 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1675 |(% rowspan="2" %)**F8.01**|JOG acceleration time|Default|20.0s
1676 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1677 |(% rowspan="2" %)**F8.02**|JOG deceleration time|Default|20.0s  
1678 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1679
1680 Define the given frequency and acceleration/deceleration time of the inverter during jog. The jog process starts and stops according to start mode 0 (F1.00, direct start) and stop mode 0 (F1.10, decelerate to stop).
1681
1682 Jog acceleration time refers to the time required for the inverter to accelerate from 0Hz to the maximum output frequency (F0.10).
1683
1684 Jog deceleration time refers to the time required for the inverter to decelerate from the maximum output frequency (F0.10) to 0Hz.
1685
1686 (% class="table-bordered" %)
1687 |(% rowspan="2" %)**F8.03**|Acceleration time2|Default|Model dependent
1688 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1689 |(% rowspan="2" %)**F8.04**|Deceleration time2|Default|Model dependent
1690 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1691 |(% rowspan="2" %)**F8.05**|Acceleration time3|Default|Model dependent
1692 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1693 |(% rowspan="2" %)**F8.06**|Deceleration time3|Default|Model dependent
1694 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1695 |(% rowspan="2" %)**F8.07**|Acceleration time4|Default|Model dependent
1696 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1697 |(% rowspan="2" %)**F8.08**|Deceleration time4|Default|Model dependent
1698 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1699
1700 The acceleration and deceleration time can be selected from F0.18 and F0.19 and the above three types of acceleration and deceleration time. The meanings are the same, please refer to the relevant description of F0.18 and F0.19. The acceleration and deceleration time 1~~4 during the operation of the inverter can be selected through different combinations of the multifunctional digital input terminal DI. Please refer to the function codes F5.01~~F5.05.
1701
1702 (% class="table-bordered" %)
1703 |(% rowspan="2" %)**F8.09**|Jump frequency 1|Default|0.00Hz
1704 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1705 |(% rowspan="2" %)**F8.10**|Jump frequency 2|Default|0.00Hz
1706 |Setting range|(% colspan="2" %)0.00 Hz~~F0.10
1707 |(% rowspan="2" %)**F8.11**|Frequency jump amplitude|Default|0.01Hz
1708 |Setting range|(% colspan="2" %)0.00~~F0.10
1709
1710 When the set frequency is within the jump frequency range, the actual running frequency will run at the jump frequency boundary close to the set frequency. By setting the jump frequency, the inverter can avoid the mechanical resonance point of the load. This inverter can set two jumping frequency points. If both skip frequencies are set to 0, this function will not work.
1711
1712 (% style="text-align:center" %)
1713 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49731ff18de325.png]]
1714
1715 Figure 6-9-1 Schematic diagram of hopping frequency
1716
1717 (% class="table-bordered" %)
1718 |(% rowspan="2" %)**F8.12**|Forward/Reverse rotation dead-zone time|Default|0.0s
1719 |Setting range|(% colspan="2" %)0.00s~~3000.0s
1720
1721 Set the transition time at the output zero frequency during the forward and reverse transition of the inverter, as shown in the figure below:
1722
1723 (((
1724 (% style="text-align:center" %)
1725 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d8f000d30762f35.png]]
1726 )))
1727
1728 Figure 6-9-2 Schematic diagram of forward and reverse dead zone time
1729
1730 (% class="table-bordered" %)
1731 |(% rowspan="3" %)**F8.13**|(% colspan="2" %)Reverse control|Default|0
1732 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Enabled
1733 |1|(% colspan="2" %)Disabled
1734
1735 When this parameter is 0: it can be reverse controlled by keyboard, terminal or communication.
1736
1737 When this parameter is 1: the reverse control function is valid regardless of the command source selection, that is, the reverse control function is invalid under keyboard, terminal, and communication control.
1738
1739 (% class="table-bordered" %)
1740 |(% rowspan="3" %)**F8.14**|(% colspan="2" %)The carrier frequency is adjusted with temperature|Default|1
1741 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)No
1742 |1|(% colspan="2" %)Yes
1743
1744 Provide fixed and random PWM carrier frequency adjustment methods. Random PWM motor noise has a wide frequency domain, and fixed PWM motor noise frequency is fixed.
1745
1746 The carrier frequency temperature adjustment is effective, which means that the inverter can automatically adjust the carrier frequency according to its own temperature. Selecting this function can reduce the chance of inverter overheating alarm.
1747
1748 (% class="table-bordered" %)
1749 |(% rowspan="2" %)**F8.15**|Droop control|Default|0.00Hz
1750 |Setting range|(% colspan="2" %)0.00Hz~~10.00Hz
1751
1752 When multiple inverters drive the same load, the load distribution is unbalanced due to different speeds, which makes the inverter with higher speed bear heavier load. The droop control characteristic is that the speed droops as the load increases, which can make the load balanced.
1753
1754 This parameter adjusts the frequency change of the inverter with drooping speed.
1755
1756 (% class="table-bordered" %)
1757 |(% rowspan="2" %)**F8.16**|Setting of accumulated power-on arrive time|Default|0h
1758 |Setting range|(% colspan="2" %)0h~~65000h
1759
1760 Preset the power-on time of the inverter. When the accumulated power-on time (F7.13) reaches this set power-on time, the inverter's multi-function digital DO outputs a running time arrival signal.
1761
1762 (% class="table-bordered" %)
1763 |(% rowspan="2" %)**F8.17**|Setting of accumulated running arrive time|Default|0h
1764 |Setting range|(% colspan="2" %)0h~~65000h
1765
1766 Pre-set the running time of the inverter. When the accumulated running time (F7.09) reaches this set running time, the inverter's multi-function digital DO outputs a running time arrival signal.
1767
1768 (% class="table-bordered" %)
1769 |(% rowspan="3" %)**F8.18**|(% colspan="2" %)Startup protection|Default|0
1770 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
1771 |1|(% colspan="2" %)Valid
1772
1773 This function code is used to improve the safety protection coefficient. If it is set to 1, it has two effects: one is that if the running command exists when the inverter is powered on, the running command must be removed to eliminate the running protection status. The second is that if the running command still exists when the inverter fault is reset, the running command must be removed first to eliminate the running protection state. This can prevent the motor from running automatically without knowing it, causing danger.
1774
1775 (% class="table-bordered" %)
1776 |(% rowspan="2" %)**F8.19**|Frequency detection value (FDT1)|Default|50.00Hz
1777 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1778 |(% rowspan="2" %)**F8.20**|Frequency detection hysteresis (FDT1)|Default|5.0%
1779 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT1)
1780
1781 Set the detection value of the output frequency and the hysteresis value of the output operation release.
1782
1783 (% style="text-align:center" %)
1784 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a185f8b9d5aa6fa7.png]]
1785
1786 Figure 6-9-3 FDT1 level diagram
1787
1788 (% class="table-bordered" %)
1789 |(% rowspan="2" %)**F8.21**|Detection amplitude of frequency reached|Default|0.0%
1790 |Setting range|(% colspan="2" %)0.00~~100%*F0.10
1791
1792 When the output frequency of the inverter reaches the set frequency value, this function can adjust its detection amplitude. As shown below:
1793
1794 (((
1795 (% style="text-align:center" %)
1796 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_5226db5d1f9834fd.png]]
1797 )))
1798
1799 Figure 6-9-4 Schematic diagram of frequency arrival detection amplitude
1800
1801 (% class="table-bordered" %)
1802 |(% rowspan="2" %)**F8.22**|(% colspan="2" %)Jump frequency during acceleration/deceleration|Default|0
1803 |Setting range|(% colspan="3" %)(((
1804 0:Disabled
1805
1806 1:Enabled
1807 )))
1808
1809 This function code is set to be valid. When the running frequency is within the jump frequency range, the actual running frequency will directly skip the set jump frequency boundary.
1810
1811 (% style="text-align:center" %)
1812 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_43540e37b92098da.png]]
1813
1814 Figure 6-9-5 Schematic diagram of effective jumping frequency during acceleration and deceleration
1815
1816 (% class="table-bordered" %)
1817 |(% rowspan="2" %)**F8.23**|(% colspan="2" %)Accumulated running time arrive selection|Default|0
1818 |Setting range|(% colspan="3" %)0:Keep running
1819 1:Fault warning
1820 |(% rowspan="2" %)**F8.24**|(% colspan="2" %)Accumulated power-on time arrive action selection|Default|0
1821 |Setting range|(% colspan="3" %)0:Keep running
1822 1:Fault warning
1823
1824 Set to 1: When the fault prompts, if the running time or power-on time arrives, according to the FA group fault protection action selection, the inverter will stop freely, decelerate to stop or continue to run (please refer to the function code FA.13~~FA.16 for detailed description).
1825
1826 (% class="table-bordered" %)
1827 |(% rowspan="2" %)**F8.25**|Acceleration time 1/2 switching frequency point|Default|0.00Hz
1828 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1829 |(% rowspan="2" %)**F8.26**|Deceleration time 1/2 switching frequency point|Default|0.00Hz
1830 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1831
1832 (% style="text-align:center" %)
1833 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_2b2ceaa98c745458.png]]
1834
1835 Figure 6-9-6 Schematic diagram of acceleration and deceleration time switching
1836
1837 ~1. Switchover selection during acceleration time
1838
1839 During acceleration, if the running frequency is less than F8.25 (acceleration time 1/2 switching frequency point), acceleration time 2 is selected, otherwise, acceleration time 1 is selected.
1840
1841 2. Switchover selection during deceleration time
1842
1843 During deceleration, if the running frequency is less than F8.26 (deceleration time 1/2 switching frequency point), deceleration time 2 is selected, otherwise, deceleration time 1 is selected.
1844
1845 (% class="table-bordered" %)
1846 |(% rowspan="2" %)**F8.27**|Terminal JOG preferred|Default|1
1847 |Setting range|(% colspan="2" %)(((
1848 0:Disabled
1849
1850 1:Enabled
1851 )))
1852
1853 This parameter is used to set the priority of terminal jog. When this parameter is set to be valid, once DI terminal receives the jog control command, the inverter will switch from other running states to terminal jog running state.
1854
1855 (% class="table-bordered" %)
1856 |(% rowspan="2" %)**F8.28**|Frequency detection value (FDT2)|Default|50.00Hz
1857 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1858 |(% rowspan="2" %)**F8.29**|Frequency detection hysteresis (FDT2)|Default|5.0%
1859 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT2)
1860
1861 The function of FDT2 is similar to the setting method of FDT1 (F8.19, F8.20).
1862
1863 (% style="text-align:center" %)
1864 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49acf9634cd985.png]]
1865
1866 Figure 6-9-7 FDT2 level diagram
1867
1868 (% class="table-bordered" %)
1869 |(% rowspan="2" %)**F8.30**|Arbitrary frequency reaching detection value 1|Default|50.00Hz
1870 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1871 |(% rowspan="2" %)**F8.31**|Arbitrary frequency reaching detection amplitude 1|Default|0.0%
1872 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1873 |(% rowspan="2" %)**F8.32**|Arbitrary frequency reaching detection value 2|Default|50.00Hz
1874 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1875 |(% rowspan="2" %)**F8.33**|Arbitrary frequency reaching detection amplitude 2|Default|0.0%
1876 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1877
1878 When the output frequency of the inverter is within the positive or negative detection range of the arbitrary arrival frequency detection value 1, 2, output pulse signal. As shown below:
1879
1880
1881 (((
1882 (% style="text-align:center" %)
1883 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3aef8d5790f3423f.png]]
1884 )))
1885
1886 Figure 6-9-8 Schematic diagram of arbitrary reaching frequency detection
1887
1888 (% class="table-bordered" %)
1889 |(% rowspan="2" %)**F8.34**|Zero current detection level|Default|5.0%
1890 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1891 |(% rowspan="2" %)**F8.35**|Zero current detection delay time|Default|0.10s
1892 |Setting range|(% colspan="2" %)0.00s~~600.00s
1893
1894 When the output current of the inverter is less than or equal to the zero current detection level and the duration exceeds the zero current detection delay time, a pulse signal is output. As shown below:
1895
1896 (% style="text-align:center" %)
1897 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_c93b84a4c5da944b.png]]
1898
1899 Figure 6-9-9 Schematic diagram of zero current detection
1900
1901 (% class="table-bordered" %)
1902 |(% rowspan="2" %)**F8.36**|Software overcurrent point|Default|200.0%
1903 |Setting range|(% colspan="2" %)0.0%(Invalid) ; 0.1%~~300.0%(Motor rated current)
1904 |(% rowspan="2" %)**F8.37**|Software overcurrent detection delay time|Default|0.00s
1905 |Setting range|(% colspan="2" %)0.00s~~600.00s
1906
1907 (((
1908 When the output current of the inverter is greater than or equal to the software overcurrent point and the duration exceeds the software overcurrent point detection delay time, a pulse signal is output. As shown below:
1909 )))
1910
1911 (% style="text-align:center" %)
1912 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_879549a41172d673.png]]
1913
1914 Figure 6-9-10 Schematic diagram of software overcurrent point detection
1915
1916 (% class="table-bordered" %)
1917 |(% rowspan="2" %)**F8.38**|Arbitrary reaching current 1|Default|100.0%
1918 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1919 |(% rowspan="2" %)**F8.39**|Arbitrary reaching current amplitude 1|Default|0.0%
1920 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1921 |(% rowspan="2" %)**F8.40**|Arbitrary reaching current 2|Default|100.0%
1922 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1923 |(% rowspan="2" %)**F8.41**|Arbitrary reaching current amplitude 2|Default|0.0%
1924 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1925
1926 When the output current of the inverter is within the detection amplitude of the positive and negative currents 1 and 2, it outputs a pulse signal. As shown below:
1927
1928 (% style="text-align:center" %)
1929 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9c74ba626be55d06.png]]
1930
1931 Figure 6-9-11 Schematic diagram of arbitrary reaching frequency detection
1932
1933 (% class="table-bordered" %)
1934 |(% rowspan="3" %)**F8.42**|(% colspan="2" %)Timing function|Default|0
1935 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1936 |1|(% colspan="2" %)Enabled
1937 |(% rowspan="5" %)**F8.43**|(% colspan="2" %)Timing duration source|Default|0
1938 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)F8.44 setting
1939 |1|(% colspan="2" %)AI1
1940 |2|(% colspan="2" %)AI2
1941 |3|(% colspan="2" %)Reserved
1942 |(% rowspan="2" %)**F8.44**|(% colspan="2" %)Timing duration|Default|0.0Min
1943 |Setting range|(% colspan="3" %)0.0Min~~6500.0Min
1944
1945 This function is used to complete the timing operation of the inverter. When the F8.42 timing function selection is valid, the inverter is running timing. When the set timing running time is reached, the inverter stops and outputs pulse signals. The timer will be cleared next time it runs. The timing remaining running time can be viewed through D0.20.
1946
1947 The set timing running time is determined by F8.43 and F8.44.
1948
1949 (% class="table-bordered" %)
1950 |(% rowspan="2" %)**F8.45**|(% colspan="2" %)AI1 input voltage lower limit|Default|3.10V
1951 |Setting range|(% colspan="3" %)0.00V~~F8.46
1952 |(% rowspan="2" %)**F8.46**|(% colspan="2" %)AI1 input voltage upper limit|Default|6.80V
1953 |Setting range|(% colspan="3" %)F8.45~~10.00V
1954
1955 When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.47 (AI1 input protection lower limit), FM (FMR) outputs a pulse signal.
1956
1957 (% class="table-bordered" %)
1958 |(% rowspan="2" %)**F8.47**|(% colspan="2" %)IGBT temperature threshold|Default|75℃
1959 |Setting range|(% colspan="3" %)0.00V~~F8.46
1960
1961 When F7.07 (IGBT module radiator temperature) reaches this value, output pulse signal
1962
1963 (% class="table-bordered" %)
1964 |(% rowspan="3" %)**F8.48**|(% colspan="2" %)Fast current limiting|Default|1
1965 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1966 |1|(% colspan="2" %)Enabled
1967
1968 Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1969
1970 = 6.10 F9 group pid function of process control =
1971
1972 PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1973
1974 (% style="text-align:center" %)
1975 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1976
1977 Figure 6-10-1 Block diagram of process PID principle
1978
1979 (% class="table-bordered" %)
1980 |(% rowspan="8" %)**F9.00**|(% colspan="3" %)PID setting source|Default|0
1981 |(% rowspan="7" %)PID setting source|0|(% colspan="3" %)F9.01
1982 |1|(% colspan="3" %)AI1
1983 |2|(% colspan="3" %)AI2
1984 |3|(% colspan="3" %)Reserved
1985 |4|(% colspan="3" %)(((
1986 Reserved
1987 )))
1988 |5|(% colspan="3" %)Communication setting
1989 |6|(% colspan="3" %)Multi-speed instructions
1990
1991 When the frequency source selects PID, that is, if F0.03 or F0.04 is selected as 8, this group of functions will work. (Please refer to function code F0.03-F0.04). This parameter determines the target quantity given channel of the process PID. The set target value of the process PID is a relative value, and the set 100% corresponds to 100% of the feedback signal of the controlled system; the PID range (F9.04) is not necessary, because no matter how much the range is set, the system will It is calculated by relative value (0~~100%). However, if the PID range is set, the actual value of the signal corresponding to the PID setting and feedback can be visually observed through the keyboard display parameters.
1992
1993 (% class="table-bordered" %)
1994 |(% rowspan="2" %)**F9.01**|(% colspan="2" %)PID digital setting|Default|50.0%
1995 |Setting range|(% colspan="3" %)0.0%~~100.0%
1996
1997 When F9.00=0 is selected, the target source is keyboard setting. This parameter needs to be set. The reference value of this parameter is the feedback amount of the system.
1998
1999 (% class="table-bordered" %)
2000 |(% rowspan="10" %)**F9.02**|(% colspan="2" %)PID feedback source|Default|0
2001 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)AI1
2002 |1|(% colspan="2" %)AI2
2003 |2|(% colspan="2" %)Reserved
2004 |3|(% colspan="2" %)AI1-AI2
2005 |4|(% colspan="2" %)PULSE setting(DI6)
2006 |5|(% colspan="2" %)Communication setting
2007 |6|(% colspan="2" %)AI1+AI2
2008 |7|(% colspan="2" %)MAX(~|AI1~|,~|AI2~|)
2009 |8|(% colspan="2" %)MIN (~|AI1~|,~|AI2~|)
2010
2011 Use this parameter to select the PID feedback channel.
2012
2013 (% class="table-bordered" %)
2014 |(% rowspan="3" %)**F9.03**|(% colspan="2" %)PID controlling direction|Default|0
2015 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Positive
2016 |1|(% colspan="2" %)Negative
2017
2018 Positive effect: When the feedback signal is less than the PID setting, the inverter output frequency is required to increase in order to make the PID balance. Such as the tension PID control of winding.
2019
2020 Reverse effect: When the feedback signal is greater than the PID setting, the output frequency of the inverter is required to decrease in order to balance the PID. Such as unwinding tension PID control.
2021
2022 The effect of this function is affected by terminal function 35: PID direction.
2023
2024 (% class="table-bordered" %)
2025 |(% rowspan="2" %)**F9.04**|(% colspan="2" %)PID setting feedback range|Default|1000
2026 |Setting range|0~~65535|(% colspan="2" %)PID given feedback range is a dimensionless unit. Used as the display of PID given and feedback.
2027 |(% rowspan="2" %)**F9.05**|(% colspan="2" %)Proportional gain P1|Default|20.0
2028 |Setting range|(% colspan="3" %)0.0~~100.0
2029 |(% rowspan="2" %)**F9.06**|(% colspan="2" %)Integral time I1|Default|2.00s
2030 |Setting range|(% colspan="3" %)0.01s~~10.00s
2031 |(% rowspan="2" %)**F9.07**|(% colspan="2" %)Differential time D1|Default|0.000s
2032 |Setting range|(% colspan="3" %)0.00~~10.000
2033
2034 Proportional gain P: determines the adjustment intensity of the entire PID regulator, the greater the P, the greater the adjustment intensity. The parameter of 100 means that when the deviation between the PID feedback amount and the given amount is 100%, the adjustment range of the PID regulator to the output frequency command is the maximum frequency (ignoring the integral effect and the derivative effect).
2035
2036 Integral time I: Decide how fast the PID regulator performs integral adjustment on the deviation between the PID feedback amount and the given amount. Integral time means that when the deviation between PID feedback quantity and given quantity is 100%, the integral regulator (ignoring proportional action and differential action) is continuously adjusted after this time, and the adjustment quantity reaches the maximum frequency (F0.09). The shorter the integration time, the greater the adjustment intensity.
2037
2038 Differential time D: determines the intensity of the PID regulator to adjust the rate of change of the deviation between the PID feedback quantity and the given quantity. Differential time means that if the feedback amount changes 100% within this time, the adjustment amount of the differential regulator is the maximum frequency (F0.09) (ignoring proportional action and integral action). The longer the derivative time, the greater the adjustment intensity.
2039
2040 (% class="table-bordered" %)
2041 |(% rowspan="2" %)**F9.08**|(% colspan="2" %)PID reverse cut-off frequency|Default|0.00Hz
2042 |Setting range|(% colspan="3" %)0.00~~F0.10
2043 |(% rowspan="2" %)**F9.09**|(% colspan="2" %)PID deviation limit|Default|0.01%
2044 |(% colspan="2" %)Setting range|(% colspan="2" %)0. 0%~~100.0%
2045
2046 Deviation limit: When the PID feedback deviation is within this range, PID stops adjusting;
2047
2048 (% class="table-bordered" %)
2049 |(% rowspan="2" %)**F9.10**|PID differential limit range|Default|0.10%
2050 |Setting range|(% colspan="2" %)0.00%~~100.00%
2051 |(% rowspan="2" %)**F9.11**|PID setting change time|Default|0.00s
2052 |Setting range|(% colspan="2" %)0.00s~~650.00s
2053
2054 PID given change time refers to the time required for the actual value of PID to change from 0.0% to 100.0%.
2055
2056 When the PID setting changes, the actual value of the PID setting will not respond immediately. Moreover, it changes linearly according to the given change time to prevent the given mutation from occurring.
2057
2058 (% class="table-bordered" %)
2059 |(% rowspan="2" %)**F9.12**|PID feedback filtering time|Default|0.00s
2060 |Setting range|(% colspan="2" %)0.00s~~60.00s
2061 |(% rowspan="2" %)**F9.13**|PID output filtering time|Default|0.00s
2062 |Setting range|(% colspan="2" %)0.00s~~60.00s
2063
2064 Filter the PID feedback and output value to eliminate sudden changes.
2065
2066 (% class="table-bordered" %)
2067 |(% rowspan="2" %)**F9.14**|(% colspan="2" %)Proportional gain P2|Default|20.0
2068 |Setting range|(% colspan="3" %)0.0~~100.0
2069 |(% rowspan="2" %)**F9.15**|(% colspan="2" %)Integral time I2|Default|2.00s
2070 |Setting range|(% colspan="3" %)0.01s~~10.00s
2071 |(% rowspan="2" %)**F9.16**|(% colspan="2" %)Differential time D2|Default|0.000s
2072 |Setting range|(% colspan="3" %)0.00~~10.000
2073
2074 The setting method is similar to F9.05, F9.06, F9.07. It is used in situations where PID parameter changes are required, see F9.18 introduction.
2075
2076 (% class="table-bordered" %)
2077 |(% rowspan="4" %)**F9.17**|(% colspan="3" %)PID parameter switchover condition|Default|0
2078 |(% rowspan="3" %)Setting range|0|(% colspan="3" %)No switchover
2079 |1|(% colspan="3" %)DI terminal
2080 |2|(% colspan="3" %)Automatic switchover based on deviation
2081 |(% rowspan="2" %)**F9.18**|(% colspan="3" %)PID parameter switchover deviation 1|Default|20.0%
2082 |Setting range|(% colspan="4" %)0.0%~~F9.20
2083 |(% rowspan="2" %)**F9.19**|(% colspan="3" %)PID parameter switchover deviation 2|Default|80.0%
2084 |Setting range|(% colspan="4" %)F9.19~~100.0%
2085
2086 In some applications, a set of PID parameters may not satisfy the entire running process. At this time, multiple groups of PID parameters may need to be switched.
2087
2088 When not switching, the PID parameter is constant as parameter group 1.
2089
2090 When the DI terminal is switched, the multi-function terminal function selection is 43: When the PID parameter switching terminal and the terminal is valid, the parameter group 2 is selected, otherwise, the parameter group 1 is selected.
2091
2092 To switch automatically according to the deviation, when the deviation between the reference and the feedback is less than the PID parameter switching deviation 1 (F9.19), use F9.05, F9.06, F9.07 as the PID adjustment parameters, and the deviation between the reference and the feedback When it is greater than PID switching deviation 2 (F9.20), use F9.15, F9.16, and F9.17 as PID adjustment parameters. The PID parameters of the deviation segment between the switching deviation 1 and the switching deviation 2 are two sets of PID parameters linear switching.
2093
2094 (% class="table-bordered" %)
2095 |(% rowspan="2" %)**F9.20**|(% colspan="2" %)PID initial value|Default|0.0%
2096 |Setting range|(% colspan="3" %)0.0%~~100.0%
2097 |(% rowspan="2" %)**F9.21**|(% colspan="2" %)PID initial value holding time|Default|0.00s
2098 |Setting range|(% colspan="3" %)0.00s~~650.00s
2099
2100 When PID is running, the inverter will first run with PID initial value (F9.21) given output and the duration is F9.22 (PID initial value holding time), and then start normal PID adjustment.
2101
2102 (% class="table-bordered" %)
2103 |(% rowspan="2" %)**F9.22**|(% colspan="2" %)Two output deviation forward maximum value|Default|1.00%.
2104 |Setting range|(% colspan="3" %)0.00%~~100.00%
2105 |(% rowspan="2" %)**F9.23**|(% colspan="2" %)Two output deviation reverse maximum value|Default|1.00%
2106 |Setting range|(% colspan="3" %)0.00%~~100.00%
2107
2108 This function code is used to limit the difference between the two beats (2ms/beat) of the PID output, so as to prevent the PID output from changing too fast. F9.23 and F9.24 respectively correspond to the maximum output deviation during forward and reverse rotation.
2109
2110 (% class="table-bordered" %)
2111 |(% rowspan="7" %)**F9.24**|(% colspan="3" %)PID integral property|Default|00
2112 |(% rowspan="6" %)Setting range|Ones Place|(% colspan="3" %)Integration separation
2113 |0|(% colspan="3" %)Disabled
2114 |1|(% colspan="3" %)Enabled
2115 |Tens Place|(% colspan="3" %)Output to limit value
2116 |0|(% colspan="3" %)Continue the integral
2117 |1|(% colspan="3" %)Stop the integral
2118
2119 Integration separation
2120
2121 When it is valid, if terminal function 22: integral pause is valid, the PID integral operation will stop. Only proportional and derivative are calculated.
2122
2123 Output to limit value
2124
2125 If it is to stop integration, when the PID output value reaches the maximum or minimum value, the PID integration stops calculating.
2126
2127 If it is continuous integration, the PID integration will be calculated at any time
2128
2129 (% class="table-bordered" %)
2130 |(% rowspan="2" %)**F9.25**|(% colspan="2" %)Detection value of PID feedback loss|Default|0.0%
2131 |Setting range|(% colspan="3" %)(((
2132 0.0%:No judging feedback loss
2133
2134 0.1%~~100.0%
2135 )))
2136 |(% rowspan="2" %)**F9.26**|(% colspan="2" %)Detection time of PID feedback loss|Default|0.0s
2137 |Setting range|(% colspan="3" %)0.0s~~20.0s
2138
2139 This function code is used to judge whether PID feedback is lost. When the PID feedback is less than the feedback loss detection value (F9.26) and the duration reaches F9.27 (feedback loss detection time), the inverter reports a fault and runs according to the fault handling method.
2140
2141 (% class="table-bordered" %)
2142 |(% rowspan="3" %)**F9.27**|(% colspan="3" %)PID operation at stop|Default|0
2143 |(% rowspan="2" %)Setting range|0|(% colspan="3" %)No PID operation at stop
2144 |1|(% colspan="3" %)PID operation at stop
2145
2146 (% class="table-bordered" %)
2147 |(% rowspan="3" %)**F9.28**|(% colspan="2" %)PID function selection|Default|0
2148 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Normal PID
2149 |1|(% colspan="2" %)Sleep PID
2150
2151 0: The inverter runs under normal PID control and the sleep function is invalid.
2152
2153 1: The inverter runs under sleep PID control, and the sleep function is enabled.
2154
2155 (% class="table-bordered" %)
2156 |(% rowspan="2" %)**F9.29**|PID sleep threshold|Default|60.0%
2157 |Setting range|(% colspan="2" %)0.0%~~100.0%
2158 |(% rowspan="2" %)**F9.30**|PID sleep delay|Default|3.0s
2159 |Setting range|(% colspan="2" %)0.0~~3600s
2160 |(% rowspan="2" %)**F9.31**|PID wake-up threshold|Default|20.0%
2161 |Setting range|(% colspan="2" %)0.0%~~100.0%
2162 |(% rowspan="2" %)**F9.32**|PID wake-up time delay|Default|3.0s
2163 |PID wake-up time delay|(% colspan="2" %)0.0~~3600s
2164
2165 When the sleep PID is selected, if the feedback is higher than the setting of F9.29 sleep threshold, the inverter will start the sleep timer. After the sleep delay time set by F9.30, if the feedback amount is still higher than the setting of F9.29 If the feedback is lower than the setting of the wake-up threshold of F9.31, the inverter will start the wake-up timer. After the time set by F9.32 wake-up delay, if the feedback If it is still lower than the set value of F9.31 wake-up threshold, the wake-up is successful and PID control is performed. Refer to Figure 6-22 below to understand the relationship between the above parameters.
2166
2167 (% style="text-align:center" %)
2168 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_229dff56f8f13b95.png]]
2169
2170 Figure 6-10-2 PID sleep and wake-up timing diagram
2171
2172
2173 = 6.11 FA group faults & protection =
2174
2175 (% class="table-bordered" %)
2176 |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
2177 |(% rowspan="2" %)Setting range|0|Disabled
2178 |1|Enabled
2179
2180 Choose 0: The inverter has no overload protection for the load motor, at this time the thermal relay shall be added in front of the motor;
2181
2182 Choose 1: At this time, the inverter has overload protection function for the motor. See FA.01 for protection value.
2183
2184 (% class="table-bordered" %)
2185 |(% rowspan="2" %)**FA.01**|Motor overload protection gain|Default|1.00
2186 |Setting range|(% colspan="2" %)0.20~~10.00
2187
2188 Motor overload protection is an inverse time curve; 220%×(FA.01)×motor rated current for 1 minute, 150%×(FA.01)×motor rated current for 60 minutes.
2189
2190 (% class="table-bordered" %)
2191 |(% rowspan="2" %)**FA.02**|Motor overload warning coefficient|Default|80%
2192 |Setting range|(% colspan="2" %)50%~~100%
2193
2194 The reference value of this value is the motor overload current. When the inverter detects that the output current reaches (FA.02) × motor overload current and continues for the specified time on the inverse time curve, it outputs a pre-alarm signal from DO or relay.
2195
2196 (% class="table-bordered" %)
2197 |(% rowspan="2" %)**FA.03**|Overvoltage stall gain|Default|10
2198 |Setting range|(% colspan="2" %)0 (Invalid)~~100
2199
2200 Adjust the inverter's ability to suppress overvoltage stall. The larger the value, the stronger the ability to suppress overvoltage.
2201
2202 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2203
2204 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overvoltage faults may occur.
2205
2206 (% class="table-bordered" %)
2207 |(% rowspan="2" %)**FA.04**|Overvoltage stall protective voltage|Default|130%
2208 |Setting range|(% colspan="2" %)120%~~150%(3 phase)
2209
2210 Select the protection point of the overvoltage stall function. When this value is exceeded, the inverter starts to perform the over-voltage stall protection function.
2211
2212 (% class="table-bordered" %)
2213 |(% rowspan="2" %)**FA.05**|Overcurrent stall gain|Default|Model dependent
2214 |Setting range|0~~100|
2215
2216 Adjust the inverter's ability to suppress excessive stall speed. The larger the value, the stronger the ability to suppress overcurrent.
2217
2218 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2219
2220 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overcurrent faults may occur.
2221
2222 (% class="table-bordered" %)
2223 |(% rowspan="2" %)**FA.06**|Overvoltage stall protective current|Default|150%
2224 |Setting range|(% colspan="2" %)100%~~200%
2225
2226 Select the current protection point for the over-current stall function. When this value is exceeded, the inverter starts to perform the overcurrent stall protection function.
2227
2228 (% class="table-bordered" %)
2229 |(% rowspan="3" %)**FA.07**|(% colspan="2" %)Short-circuit to ground upon power-on|Default|1
2230 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2231 |1|(% colspan="2" %)Enabled
2232
2233 The inverter can be selected to detect whether the motor has a ground protection short-circuit fault when the inverter is powered on. If this function is valid, the inverter will output for a short time at the moment of power-on.
2234
2235 (% class="table-bordered" %)
2236 |(% rowspan="2" %)**FA.08**|Fault auto reset times|Default|0
2237 |Setting range|(% colspan="2" %)0~~5
2238
2239 When the inverter selects automatic fault reset, it is used to set the number of times that can be reset automatically. If the value exceeds this value, the inverter will be on standby and waiting for repair.
2240
2241 (% class="table-bordered" %)
2242 |(% rowspan="2" %)**FA.09**|Relay action during fault auto reset|Default|0
2243 |Setting range|(% colspan="2" %)0:Disabled; 1:Enabled
2244
2245 After selecting the inverter fault automatic reset function, during the execution of the fault reset, through this parameter setting, you can decide whether the fault relay is required to act, so as to shield the fault alarm caused by this and make the equipment continue to run.
2246
2247 (% class="table-bordered" %)
2248 |(% rowspan="2" %)**FA.10**|(% colspan="2" %)Time interval of fault auto reset|Default|1.0s
2249 |Setting range|(% colspan="3" %)0.1s~~100.0s
2250
2251 The waiting time for the inverter from the fault alarm to the automatic reset of the fault.
2252
2253 (% class="table-bordered" %)
2254 |(% rowspan="2" %)**FA.11**|(% colspan="2" %)Input phase loss protection|Default|Model dependent
2255 |Setting range|(% colspan="3" %)(((
2256 0:Disabled
2257
2258 1:Enabled
2259 )))
2260
2261 Choose whether to protect the input phase loss.
2262
2263 (% class="table-bordered" %)
2264 |(% rowspan="2" %)**FA.12**|(% colspan="2" %)Output phase loss protection|Default|1
2265 |Setting range|(% colspan="3" %)(((
2266 0:Disabled
2267
2268 1:Enabled
2269 )))
2270
2271 Choose whether to protect the output phase loss.
2272
2273 (% class="table-bordered" %)
2274 |(% rowspan="9" %)**FA.13**|(% colspan="2" style="width:442px" %)Fault protection action selection 1|(% style="width:451px" %)Default|(% colspan="2" %)00000
2275 |(% rowspan="8" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Motor Overload(Err11)
2276 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2277 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2278 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Continue to run
2279 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Input Phase Loss(Err12) (0~~2,as ones place)
2280 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Output Phase Loss (Err13) (0~~2,as ones place)
2281 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)External Fault(Err15) (0~~2,as ones place)
2282 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Communication Fault(Err16) (0~~2,as ones place)
2283 |(% rowspan="11" %)**FA.14**|(% colspan="2" style="width:442px" %)Reserved|(% style="width:451px" %)Default|(% colspan="2" %)
2284 |(% rowspan="10" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Reserved
2285 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2286 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2287 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Reserved
2288 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Reserved
2289 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2290 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2291 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Reserved
2292 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2293 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2294 |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2295 |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2296 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2297 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2298 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2299 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2300 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2301 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2302 | |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)(((
2303 PID feedback loss during
2304
2305 Running (Err31) (0~~2,as ones place of FA.13)
2306 )))
2307 |(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2308 Overcurrent stall Integral coefficient
2309 )))|(% colspan="2" style="width:451px" %)Default|500
2310 |(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2311
2312 set overcurrent stall Integral coefficient rate.
2313
2314 When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2315
2316 When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
2317
2318 When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2319
2320 (% class="table-bordered" %)
2321 |(% rowspan="2" %)(((
2322 FA.17
2323 )))|(((
2324 Undervoltage setting
2325 )))|(((
2326 Default
2327 )))|(((
2328 100.0%
2329 )))
2330 |(((
2331 Setting range
2332 )))|(% colspan="2" rowspan="1" %)(((
2333 60.0%~~140.0%
2334 )))
2335
2336 Instantaneous power failure mode selection
2337
2338 (% class="table-bordered" %)
2339 |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
2340 |Setting range|(% colspan="2" %)60.0%~~140.0%
2341
2342 Adjusting this parameter can adjust the voltage point at which the inverter reports undervoltage fault (Err09), and 100.0% corresponds to 350V.
2343
2344 (% class="table-bordered" %)
2345 |(% rowspan="2" %)**FA.19**|Overvoltage setting|Default|810.0V
2346 |Setting range|(% colspan="2" %)200.0V ~~ 2500.0V
2347
2348 Generally, this parameter is not adjusted after the inverter leaves the factory. If there is frequent overvoltage during operation, please consult the manufacturer's customer service department before making adjustments.
2349
2350 (% class="table-bordered" %)
2351 |(% rowspan="6" %)**FA.20**|(% colspan="2" %)Continue running frequency selection during failure|Default|0
2352 |(% rowspan="5" %)Setting range|0|(% colspan="2" %)Run with the current run frequency
2353 |1|(% colspan="2" %)Run with the setting frequency
2354 |2|(% colspan="2" %)Run with the upper limit frequency
2355 |3|(% colspan="2" %)Run with lower limit frequency.
2356 |4|(% colspan="2" %)(((
2357 Run with standby frequency when abnormal
2358
2359 (FA.21)
2360 )))
2361 |(% rowspan="2" %)**FA.21**|(% colspan="2" %)Abnormal standby frequency setting|Default|100.0%(Current set frequency)
2362 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%
2363
2364 When a fault occurs during the operation of the inverter and the fault handling method is keep running, the inverter prompts A~*~* and runs at the set frequency determined by this function.
2365
2366 (% class="table-bordered" %)
2367 |(% rowspan="4" %)**FA.22**|(% colspan="2" %)Action selection at instantaneous power failure|Default|0
2368 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Invalid
2369 |1|(% colspan="2" %)Stop as Deceleration time 1
2370 |2|(% colspan="2" %)Stop as Deceleration time 2
2371 |(% rowspan="2" %)**FA.23**|(% colspan="2" %)Action pause judging voltage at instantaneous power failure|Default|90.0%
2372 |(% colspan="2" %)Setting range|(% colspan="2" %)80.0%~~100.0%(Standard Bus Voltage)
2373 |(% rowspan="2" %)**FA.24**|(% colspan="2" %)Voltage rally judging time at instantaneous power failure|Default|0.50s
2374 |(% colspan="2" %)Setting range|(% colspan="2" %)0.00s~~100.00s
2375 |(% rowspan="2" %)**FA.25**|(% colspan="2" %)Action judging voltage at instantaneous power failure|Default|80.0%
2376 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%( Standard Bus Voltage)
2377
2378 This function means that the inverter will not stop when the power is cut instantaneously. In the case of an instantaneous power failure or a sudden voltage drop, the inverter will reduce its output speed, and compensate for the voltage drop by feeding back energy through the load to keep the inverter running in a short time.
2379
2380 If the instantaneous stop non-stop function selection is valid, when the bus voltage is lower than the voltage indicated by the instantaneous stop non-stop action judgment voltage (FA.25), the inverter will decelerate according to the instantaneous stop action selection. When the stop action judgment voltage (FA.25) represents the voltage, and the duration is maintained for the momentary stop and non-stop voltage rise judgment time (FA.24), the inverter resumes the set frequency operation; otherwise the inverter will continue to reduce the operating frequency to Stop at 0 o'clock. Instantaneous stop non-stop function if shown.
2381
2382 The deceleration time of instantaneous power failure is too long, the load feedback energy is small, and the low voltage can not be effectively compensated; the deceleration time is too short, the load feedback energy is large, which will cause overvoltage protection. Please adjust the deceleration time appropriately according to the load inertia and the weight of the load.
2383
2384 (% class="table-bordered" %)
2385 |(% rowspan="3" %)**FA.26**|(% colspan="2" %)Loss of loads protection options|Default|0
2386 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2387 |1|(% colspan="2" %)Enabled
2388 |(% rowspan="2" %)**FA.27**|(% colspan="2" %)Loss of loads detection level|Default|10.0%
2389 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0%~~100.0%(Motor rated current)
2390 |(% rowspan="2" %)**FA.28**|(% colspan="2" %)Loss of loads detection time|Default|1.0s
2391 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s~~60.0s
2392
2393 If this function is valid, when the inverter loses load, the inverter reports Err30 fault, and the output frequency is 7% of the rated frequency; if the load is restored, it will run at the set frequency. The off-load detection level and detection time can be set.
2394
2395 (% class="table-bordered" %)
2396 |(% rowspan="6" %)**FA.29**|(% colspan="2" %)The decimal point of the frequency in failure state|Default|222
2397 |(% rowspan="5" %)Setting range|Ones Place|(% colspan="2" %)The third fault frequency decimal point
2398 |1|(% colspan="2" %)1 decimal point
2399 |2|(% colspan="2" %)2 decimal point
2400 |Tens Place|(% colspan="2" %)The second fault frequency decimal point (1~~2,as ones place)
2401 |Hundreds Place|(% colspan="2" %)The first fault frequency decimal point (1~~2,as ones place)
2402
2403 Since the frequency decimal point can be set, this function code is used to record the position of the decimal point of the frequency at the time of failure (for frequency display during failure).
2404
2405 Note: The function code display data is H.xxx, where H. means hexadecimal data.
2406
2407 = 6.12 FB group frequency swing, length fixing and counting =
2408
2409 The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2410
2411 Swing frequency function means that the output frequency of the inverter swings up and down around the set frequency (frequency command is selected by F0.07). The trajectory of the running frequency on the time axis is shown in the figure below, where the swing amplitude is determined by FB.00 and FB. 01 setting, when FB.01 is set to 0, that is, the swing amplitude is 0, and the swing frequency has no effect.
2412
2413 (% style="text-align:center" %)
2414 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_1c70827204f62468.png]]
2415
2416 Figure 6-12-1 Schematic diagram of swing frequency work
2417
2418 (% class="table-bordered" %)
2419 |(% rowspan="3" %)**FB.00**|(% colspan="2" %)Swing frequency setting mode|Default|0
2420 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Relative to the central frequency
2421 |1|(% colspan="2" %)Relative to the maximum frequency
2422
2423 Use this parameter to determine the reference amount of swing.
2424
2425 0: Relative to the center frequency (F0.07 frequency source selection), a variable swing amplitude system. The swing amplitude changes with the center frequency (set frequency).
2426
2427 1: Relative to the maximum frequency (F0.10 maximum output frequency), it is a fixed swing amplitude system.
2428
2429 (% class="table-bordered" %)
2430 |(% rowspan="2" %)**FB.01**|(% colspan="2" %)Swing frequency amplitude|Default|0.0%
2431 |Setting range|(% colspan="3" %)0.0%~~100.0%
2432 |(% rowspan="2" %)**FB.02**|(% colspan="2" %)Jump frequency amplitude|Default|0.0%
2433 |Setting range|(% colspan="3" %)0.0%~~50.0%
2434
2435 Use this parameter to determine the swing amplitude and kick frequency. The swing frequency operation frequency is restricted by the upper and lower limit frequencies.
2436
2437 The swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0): swing amplitude AW = frequency source F0.07 × swing amplitude FB.01.
2438
2439 The swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1): swing amplitude AW = maximum frequency F0.10× swing amplitude FB.01.
2440
2441 Kick frequency = swing amplitude AW × sudden jump frequency amplitude FB.02. That is, when the swing frequency is running, the value of the kick frequency relative to the swing amplitude.
2442
2443 If the swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0), the kick frequency is the variable value.
2444
2445 If the swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1), the kick frequency is a fixed value.
2446
2447 (% class="table-bordered" %)
2448 |(% rowspan="2" %)**FB.03**|(% colspan="2" %)Swing frequency cycle|Default|10.0s
2449 |Setting range|(% colspan="3" %)0.0s~~3000.0s
2450 |(% rowspan="2" %)**FB.04**|(% colspan="2" %)Triangular wave rising time coefficient|Default|50.0%
2451 |Setting range|(% colspan="3" %)0.0%~~100.0%
2452
2453 Swing frequency cycle: the time value of a complete swing frequency cycle. FB.04 triangle wave rise time coefficient is relative to FB.03 swing frequency period.
2454
2455 Triangular wave rise time = swing frequency period FB.03 × triangular wave rise time coefficient FB.04 (unit: s)
2456
2457 Triangular wave falling time = swing frequency period FB.03 × (1-triangular wave rising time coefficient FB.04) (unit: s)
2458
2459 (% class="table-bordered" %)
2460 |(% rowspan="2" %)**FB.05**|Setting length|Default|1000m
2461 |Setting range|(% colspan="2" %)0m~~65535m
2462 |(% rowspan="2" %)**FB.06**|Actual length|Default|0m
2463 |Setting range|(% colspan="2" %)0m~~65535m
2464 |(% rowspan="2" %)**FB.07**|Number of pulses per meter|Default|100.0
2465 |Setting range|(% colspan="2" %)0.1~~6553.5
2466
2467 The three function codes of set length, actual length and number of pulses per m are mainly used for fixed length control. The length is calculated by the pulse signal input from the digital input terminal, and the corresponding input terminal needs to be set as the length counting input terminal. Generally, when the pulse frequency is high, DI5 input is required.
2468
2469 Actual length = length count input pulse number / pulse number per m
2470
2471 When the actual length FB.06 exceeds the set length FB.05, the multi-function digital output terminal "length reach terminal" will output ON signal (please refer to F1.04 function code)
2472
2473 (% class="table-bordered" %)
2474 |(% rowspan="2" %)**FB.08**|(% colspan="2" %)Set count value|Default|1000
2475 |Setting range|(% colspan="3" %)1~~65535
2476 |(% rowspan="2" %)**FB.09**|(% colspan="2" %)Designated count value|Default|1000
2477 |Setting range|(% colspan="3" %)1~~65535
2478
2479 The count value is counted by inputting the pulse signal from the counter input terminal in the multi-function switch input terminal.
2480
2481 When the count value reaches the set count value, the switch output terminal outputs a signal that the set count value has reached. The counter stops counting.
2482
2483 When the count value reaches the designated count value, the switch output terminal outputs a signal that the designated count value has reached. The counter continues to count and stops at the "set count value".
2484
2485 The designated count value FB.09 should not be greater than the set count value FB.08.
2486
2487 This function is as below:
2488
2489 (% style="text-align:center" %)
2490 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3afe609068e8ab4b.png]]
2491
2492 Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2493
2494 = 6.13 FC group communication parameters =
2495
2496 (% class="table-bordered" %)
2497 |(% rowspan="2" %)**FC.00**|Local address|Default|1
2498 |Setting range|(% colspan="2" %)00~~247
2499
2500 When the local address is set to 0, it is the broadcast address, which realizes the broadcast function of the host computer. The address of this machine is unique (except the broadcast address), which is the basis for the point-to-point communication between the host computer and the inverter.
2501
2502 (% class="table-bordered" %)
2503 |(% rowspan="9" %)**FC.01**|Baud Rate|(% colspan="2" %)Default|5
2504 |(% rowspan="8" %)Setting range|0|(% colspan="2" %)300 bps
2505 |1|(% colspan="2" %)600 bps
2506 |2|(% colspan="2" %)1200 bps
2507 |3|(% colspan="2" %)2400 bps
2508 |4|(% colspan="2" %)4800 bps
2509 |5|(% colspan="2" %)9600 bps
2510 |6|(% colspan="2" %)19200 bps
2511 |7|(% colspan="2" %)38400 bps
2512
2513 This parameter is used to set the data transmission rate between the host computer and the inverter. Note that the baud rate set by the host computer and the inverter must be consistent, otherwise, the communication cannot be carried out. The greater the baud rate, the faster the communication speed.
2514
2515 (% class="table-bordered" %)
2516 |(% rowspan="5" %)**FC.02**|Data format|Default|3
2517 |(% rowspan="4" %)Setting range|0|No check, data format <8,N,2>
2518 |1|Even parity check, data format <8,E,1>
2519 |2|Odd Parity check, data format <8,0,1>
2520 |3|No check, data format <8,N,1>
2521
2522 The data format set by the host computer and the inverter must be same, otherwise, the communication cannot be carried out.
2523
2524 (% class="table-bordered" %)
2525 |(% rowspan="2" %)**FC.03**|Response delay|Default|2ms
2526 |Setting range|(% colspan="2" %)0~~20ms
2527
2528 Response delay: refers to the intermediate time between the end of the inverter data receiving and the sending of data to the upper computer. If the response delay is less than the system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system will wait after processing the data until the response delay time expires before going to the upper computer. send data.
2529
2530 (% class="table-bordered" %)
2531 |(% rowspan="2" %)**FC.04**|Communication timeout|Default|0.0 s
2532 |Setting range|(% colspan="2" %)0.0 s(Invalid),0.1~~60.0s
2533
2534 When the function code is set to 0.0 s, the communication timeout time parameter is invalid.
2535
2536 When the function code is set to a valid value, if the interval between one communication and the next communication exceeds the communication timeout time, the system will report a communication failure error (Err16). Under normal circumstances, it is set to invalid. If you set the secondary parameters in a continuous communication system, you can monitor the communication status.
2537
2538 (% class="table-bordered" %)
2539 |(% rowspan="3" %)**FC.05**|Communication reading current resolution|Default|0
2540 |(% rowspan="2" %)Setting range|0|0.01A
2541 |1|0.1A
2542
2543 Used to determine the output unit of the current value when the communication reads the output current.
2544
2545 = 6.14 FD group muti-stage speed and simple plc functions =
2546
2547 The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2548
2549 (% class="table-bordered" %)
2550 |(% rowspan="2" %)**FD.00**|Multistage Speed0|Default|0.0%
2551 |Setting range|(% colspan="2" %)-100.0%~~100.0%; 100.0% for maximum frequency (F0.10)
2552 |(% rowspan="2" %)**FD.01**|Multistage Speed1|Default|0.0%
2553 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2554 |(% rowspan="2" %)**FD.02**|Multistage Speed2|Default|0.0%
2555 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2556 |(% rowspan="2" %)**FD.03**|Multistage Speed3|Default|0.0%
2557 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2558 |(% rowspan="2" %)**FD.04**|Multistage Speed4|Default|0.0%
2559 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2560 |(% rowspan="2" %)**FD.05**|Multistage Speed5|Default|0.0%
2561 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2562 |(% rowspan="2" %)**FD.06**|Multistage Speed6|Default|0.0%
2563 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2564 |(% rowspan="2" %)**FD.07**|Multistage Speed7|Default|0.0%
2565 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2566 |(% rowspan="2" %)**FD.08**|Multistage Speed8|Default|0.0%
2567 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2568 |(% rowspan="2" %)**FD.09**|Multistage Speed9|Default|0.0%
2569 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2570 |(% rowspan="2" %)**FD.10**|Multistage Speed10|Default|0.0Hz
2571 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2572 |(% rowspan="2" %)**FD.11**|Multistage Speed11|Default|0.0%
2573 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2574 |(% rowspan="2" %)**FD.12**|Multistage Speed12|Default|0.0%
2575 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2576 |(% rowspan="2" %)**FD.13**|Multistage Speed13|Default|0.0%
2577 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2578 |(% rowspan="2" %)**FD.14**|Multistage Speed14|Default|0.0%
2579 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2580 |(% rowspan="2" %)**FD.15**|Multistage Speed15|Default|0.0%
2581 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2582
2583 When the frequency source parameters F0.07, F0.03, F0.04 are determined to be the PLC operation mode, you need to set FD.00 ~~ FD.15, FD.16, FD.17, FD.18 ~~ FD.49 to determine them. characteristic.
2584
2585 Note: The symbols of FD.00~~FD.15 determine the running direction of the simple PLC. If it is negative, it means running in the reverse direction.
2586
2587 Simple PLC schematic diagram:
2588
2589 (% class="table-bordered" %)
2590 |(% rowspan="4" %)**FD.16**|(% colspan="2" %)Simple PLC running mode|Default|0
2591 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Stop after the AC Drive runs one cycle
2592 |1|(% colspan="2" %)Keep final values after the AC Drive runs one cycle(running frequency)
2593 |2|(% colspan="2" %)Repeat after the AC Drive runs one cycle
2594 |(% rowspan="7" %)**FD.17**|(% colspan="2" %)Simple PLC retentive selection|Default|00
2595 |(% rowspan="6" %)Setting range|Ones place|(% colspan="2" %)(Retentive upon power failure)
2596 |0|(% colspan="2" %)No
2597 |1|(% colspan="2" %)Yes
2598 |Tens place|(% colspan="2" %)(Retentive upon stop)
2599 |0|(% colspan="2" %)No
2600 |1|(% colspan="2" %)Yes
2601
2602 PLC operation mode
2603
2604 **0: Stop after the AC Drive runs one cycle**
2605
2606 After the inverter completes a single cycle, it stops automatically, and it needs to be given a run command again to start.
2607
2608 **1: Keep final values after the AC Drive runs one cycle(running frequency)**
2609
2610 After the inverter completes a single cycle, it automatically maintains the operating frequency and direction of the last segment.
2611
2612 **2: Repeat after the AC Drive runs one cycle**
2613
2614 After the inverter completes one cycle, it will automatically start the next cycle until the system stops when there is a stop command.
2615
2616 **3: Retentive upon power failure**
2617
2618 PLC power-down memory refers to memorizing the operation stage and frequency of PLC before power-off.
2619
2620 **4: Retentive upon stop**
2621
2622 PLC stop memory is to record the previous PLC running stage and running frequency when stopping.
2623
2624 (% class="table-bordered" %)
2625 |(% rowspan="2" %)**FD.18**|(% colspan="2" %)Running time of simple PLC reference 0|Default|0.0s(h)
2626 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2627 |(% rowspan="2" %)**FD.19**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 0|Default|0
2628 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2629 |(% rowspan="2" %)**FD.20**|(% colspan="2" %)Running time of simple PLC reference 1|Default|0.0s(h)
2630 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2631 |(% rowspan="2" %)**FD.21**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 1|Default|0
2632 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2633 |(% rowspan="2" %)**FD.22**|(% colspan="2" %)Running time of simple PLC reference 2|Default|0.0s(h)
2634 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2635 |(% rowspan="2" %)**FD.23**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 2|Default|0
2636 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2637 |(% rowspan="2" %)**FD.24**|(% colspan="2" %)Running time of simple PLC reference 3|Default|0.0s(h)
2638 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2639 |(% rowspan="2" %)**FD.25**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 3|Default|0
2640 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2641 |(% rowspan="2" %)**FD.26**|(% colspan="2" %)Running time of simple PLC reference 4|Default|0.0s(h)
2642 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2643 |(% rowspan="2" %)**FD.27**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 4|Default|0
2644 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2645 |(% rowspan="2" %)**FD.28**|(% colspan="2" %)Running time of simple PLC reference 5|Default|0.0s(h)
2646 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2647 |(% rowspan="2" %)**FD.29**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 5|Default|0
2648 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2649 |(% rowspan="2" %)**FD.30**|(% colspan="2" %)Running time of simple PLC reference 6|Default|0.0s(h)
2650 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2651 |(% rowspan="2" %)**FD.31**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 6|Default|0
2652 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2653 |(% rowspan="2" %)**FD.32**|(% colspan="2" %)Running time of simple PLC reference 7|Default|0.0s(h)
2654 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2655 |(% rowspan="2" %)**FD.33**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 7|Default|0
2656 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2657 |(% rowspan="2" %)**FD.34**|(% colspan="2" %)Running time of simple PLC reference 8|Default|0.0s(h)
2658 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2659 |(% rowspan="2" %)**FD.35**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 8|Default|0
2660 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2661 |(% rowspan="2" %)**FD.36**|(% colspan="2" %)Running time of simple PLC reference 9|Default|0.0s(h)
2662 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2663 |(% rowspan="2" %)**FD.37**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 9|Default|0
2664 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2665 |(% rowspan="2" %)**FD.38**|(% colspan="2" %)Running time of simple PLC reference 10|Default|0.0s(h)
2666 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0 s(h)~~6553.5s(h)
2667 |(% rowspan="2" %)**FD.39**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 10|Default|0
2668 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2669 |(% rowspan="2" %)**FD.40**|(% colspan="2" %)Running time of simple PLC reference 11|Default|0.0s(h)
2670 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2671 |(% rowspan="2" %)**FD.41**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 11|Default|0
2672 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2673 |(% rowspan="2" %)**FD.42**|(% colspan="2" %)Running time of simple PLC reference 12|Default|0.0s(h)
2674 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2675 |(% rowspan="2" %)**FD.43**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 12|Default|0
2676 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2677 |(% rowspan="2" %)**FD.44**|(% colspan="2" %)Running time of simple PLC reference 13|Default|0.0s(h)
2678 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2679 |(% rowspan="2" %)**FD.45**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 13|Default|0
2680 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2681 |(% rowspan="2" %)**FD.46**|(% colspan="2" %)Running time of simple PLC reference 14|Default|0.0s(h)
2682 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2683 |(% rowspan="2" %)**FD.47**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 14|Default|0
2684 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2685 |(% rowspan="2" %)**FD.48**|(% colspan="2" %)Running time of simple PLC reference 15|Default|0.0s(h)
2686 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2687 |(% rowspan="2" %)**FD.49**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 15|Default|0
2688 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2689 |(% rowspan="4" %)**FD.50**|(% colspan="2" %)Time unit of simple PLC running|Default|0
2690 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)s:second
2691 |1|(% colspan="2" %)h:hour
2692 |2|(% colspan="2" %)min:minute
2693 |(% rowspan="8" %)**FD.51**|(% colspan="2" %)The source of multistage speed 0|Default|0
2694 |(% rowspan="7" %)Setting range|0|(% colspan="2" %)Set by FD.00
2695 |1|(% colspan="2" %)AI1
2696 |2|(% colspan="2" %)AI2
2697 |3|(% colspan="2" %)Reserved
2698 |4|(% colspan="2" %)Reserved
2699 |5|(% colspan="2" %)PID
2700 |6|(% colspan="2" %)Set by preset frequency (F0.08)
2701
2702 This parameter determines the target quantity given channel of multi-speed 0.
2703
2704 = 6.15 FE group user password management =
2705
2706 (% class="table-bordered" %)
2707 |(% rowspan="2" %)**FE.00**|User password|Default|0
2708 |Setting range|(% colspan="2" %)0~~65535
2709
2710 Set to any non-zero number, the password protection function will take effect.
2711
2712 00000: Clear the previously set user password value and disable the password protection function.
2713
2714 When the user password is set and effective, when entering the parameter setting state again, if the user password is incorrect, you can only view the parameters, but
2715
2716 cannot modify the parameters. Please keep in mind the user password. If you accidentally set it by mistake or forget it, please contact the manufacturer.
2717
2718 (% class="table-bordered" %)
2719 |(% rowspan="2" %)**FE.01**|Fault record display times|Default|5
2720 |Setting range|(% colspan="2" %)0~~15
2721
2722 This function code is used to set the number of displaying fault records.