Wiki source code of 08 Function parameter details

Version 22.1 by Theodore Xu on 2024/03/27 09:41

Show last authors
1 = F0 group basic parameters =
2
3 (% class="table-bordered" %)
4 |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
5 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Sensorless vector control(SVC)
6 |1|(% colspan="2" %)V/F Control
7
8 0: Sensorless vector control(SVC)
9
10 Refers to the open loop vector. It is suitable for general high-performance control occasions, one AC drive can only drive one motor. Such as machine tools, centrifuges, wire drawing machines, injection molding machines and other loads.
11
12 1: V/F Control
13
14 It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15
16 (% class="box infomessage" %)
17 (((
18 **✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it.
19 )))
20
21 (% class="table-bordered" %)
22 |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
23 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Keypad control
24 |1|(% colspan="2" %)Terminal control
25 |2|(% colspan="2" %)Communication control
26
27 Select the source of AC drive control command.
28
29 AC drive commands include: start, stop, forward, reverse, jog, etc.
30
31 0: Keypad control(“LOCAL/REMOT”LED off);
32
33 Command control is performed by the RUN and STOP/RESET keys on the Keypad.
34
35 1: Terminal control(“LOCAL/REMOT”LED on);
36
37 Command control is carried out by multi-function input terminals FWD, REV, FJOG, RJOG, etc.
38
39 2: Communication control(“LOCAL/REMOT”Led blinking)
40
41 Command control is given by the upper machine through communication.
42
43 (% class="table-bordered" %)
44 |(% rowspan="3" %)**F0.02**|(% colspan="2" %)UP/DOWN standard|Default|0
45 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Running frequency
46 |1|(% colspan="2" %)Set frequency
47
48 This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
49
50 (% class="table-bordered" style="width:1474px" %)
51 |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
52 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
53 |1|(% colspan="2" %)Digital setting (retentive at power failure)
54 |2|(% colspan="2" %)AI1
55 |3|(% colspan="2" %)AI2
56 |4|(% colspan="2" %)Reserved
57 |5|(% colspan="2" %)PULSE setting DI6(Reserved)
58 |6|(% colspan="2" %)Multi-stage speed setting
59 |7|(% colspan="2" %)Simple PLC
60 |8|(% colspan="2" %)PID
61 |9|(% colspan="2" %)Communication setting
62
63 Select the main source of the AC drive’s input frequency. There are 10 main frequency sources:
64
65 **0:** Digital setting (non-retentive at power failure)
66
67 The initial value is 0. The frequency can be increased or decreased by the pulse knob, and the set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
68
69 Non-retentive means that after the AC drive is powered off, the set frequency value will be restored to 0; it will be cleared after switching as the frequency source, so this parameter should not be the object of frequency source switching.
70
71 **1: **Digital setting (retentive at power failure)
72
73 The initial value is the value of F0.08 "Keypad setting frequency".
74
75 The set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
76
77 Retentive means that when the AC drive is powered on again after power failure, the set frequency is the value before the last power failure (note that it is used in conjunction with F0.23).
78
79 **2: **AI1
80
81 **3:** AI2
82
83 Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
84
85 **5: **PULSE setting(Reserved)
86
87 The set frequency is given by the terminal pulse.
88
89 Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~20kHz.
90
91 **6: **Multi-stage speed
92
93 Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency.
94
95 **7: **Simple PLC
96
97 Select simple PLC mode. When the frequency source is simple PLC, you need to set the FD group "multi-speed and PLC" parameters to determine the set frequency.
98
99 **8: **PID
100
101 Select process PID control. At this time, you need to set the F9 group "PID function of process control ". The running frequency of the inverter is the frequency value after PID action. For the meaning of PID given source, given amount, feedback source, etc., please refer to the introduction of "PID Function of process control" in F9 group.
102
103 **9: **Communication setting
104
105 Means that the main frequency source is given by the upper machine through communication.
106
107 (% class="table-bordered" %)
108 |(% rowspan="11" %)**F0.04**|(% colspan="2" %)Setting auxiliary frequency source Y|Default|0
109 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
110 |1|(% colspan="2" %)Digital setting (retentive at power failure)
111 |2|(% colspan="2" %)AI1
112 |3|(% colspan="2" %)AI2
113 |4|(% colspan="2" %)Reserved
114 |5|(% colspan="2" %)Reserved
115 |6|(% colspan="2" %)Multi-stage speed setting
116 |7|(% colspan="2" %)Simple PLC
117 |8|(% colspan="2" %)PID
118 |9|(% colspan="2" %)Communication setting
119
120 When the auxiliary frequency source is used as an independent frequency given channel (that is, the frequency source is selected to switch from X to Y), its usage is the same as that of the main frequency source X.
121
122 When the auxiliary frequency source is used as a superimposed reference (that is, the frequency source is selected as X+Y, X to X+Y switching or Y to X+Y switching), there are the following special features:
123
124 ~1. When the auxiliary frequency source is digital setting or pulse knob setting, the preset frequency (F0.08) does not work. You can use the ▲/▼ keys of the keyboard (or UP, DOWN of the multi-function input terminal) to adjust up and down based on the given frequency.
125
126 2. When the auxiliary frequency source is analog input setting (AI1, AI2) or pulse input setting, 100% of the input setting corresponds to the auxiliary frequency source range (see the description of F0.05 and F0.06). If you need to adjust up and down on the basis of the main set frequency, please set the corresponding setting range of the analog input to .n%~~+n%.
127
128 3. When the frequency source is pulse input setting, it is similar to analog input setting.
129
130 Tip: The selection of auxiliary frequency source Y and the main frequency source X cannot be the same, that is, the main and auxiliary frequency sources cannot use the same frequency given channel.
131
132 (% class="table-bordered" %)
133 |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
134 |(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency
135 |(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X
136 |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
137 |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
138
139 When the frequency source is selected as the frequency superposition setting (F0.07 is set to 1, 3 or 4), it is used to determine the adjustment range of the auxiliary frequency source. F0.05 is used to determine the relative object of the range. If it is relative to the maximum frequency (F0.10), its range is a fixed value; if it is relative to the main frequency source X, its range will follow the change of main frequency source X.
140
141 (% class="table-bordered" %)
142 |(% rowspan="13" %)**F0.07**|(% colspan="2" %)Frequency reference selection|Default|0
143 |(% rowspan="12" %)Setting Range|One’s digit|(% colspan="2" %)Selection of frequency source
144 |0|(% colspan="2" %)main frequency source X
145 |1|(% colspan="2" %)main and auxiliary calculation results(The calculation relationship is determined by the ten’s digits)
146 |2|(% colspan="2" %)Switchover between X and Y
147 |3|(% colspan="2" %)Switchover between X and main (X) & auxiliary(Y) calculation
148 |4|(% colspan="2" %)Switchover between Y and main (X) & auxiliary(Y) calculation
149 |Ten’s digit|(% colspan="2" %)X and Y calculation relationship
150 |0|(% colspan="2" %)X+Y
151 |1|(% colspan="2" %)X-Y
152 |2|(% colspan="2" %)MAX(X, Y)
153 |3|(% colspan="2" %)MIN(X, Y)
154 |4|(% colspan="2" %)X* Y
155
156 Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
157
158 One’s digit: Selection of frequency source
159
160 0: Main frequency source X
161
162 The main frequency X is used as the target frequency.
163
164 1: Main and auxiliary calculation results
165
166 The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
167
168 2: Switchover between X and Y
169
170 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
171
172 When the multi-function input terminal 18: frequency source switching is valid, the auxiliary frequency source Y is taken as the target frequency.
173
174 3: Switchover between X and main (X) & auxiliary(Y) calculation
175
176 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
177
178 When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
179
180 4: Switchover between Y and main (X) & auxiliary(Y) calculation
181
182 When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
183
184 When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
185
186 Ten’s digit:X and Y calculation relationship:
187
188 0: X+Y
189
190 The sum of the main frequency source X and the auxiliary frequency source Y serves as the target frequency. Realize frequency superposition given function.
191
192 1: X-Y
193
194 The difference between the main frequency source X and the auxiliary frequency source Y serves as the target frequency.
195
196 2: MAX(X, Y)
197
198 Take the main frequency source X and auxiliary frequency source Y with the largest absolute value as the target frequency.
199
200 3: MIN(X, Y)
201
202 Take the main frequency source X and the auxiliary frequency source Y with the smallest absolute value as the target frequency.
203
204 4: X * Y
205
206 The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
207
208 (% class="table-bordered" %)
209 |(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz
210 |(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
211
212 When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
213
214 (% class="table-bordered" style="width:1454px" %)
215 |(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0
216 |(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction
217 |(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction
218
219 By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
220
221 Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
222
223 (% class="table-bordered" style="width:1473px" %)
224 |(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz
225 |(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz
226 |(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0
227 |(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12
228 |(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1
229 |(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2
230 |(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved
231 |(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved
232 |(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting
233
234 Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
235
236 For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
237
238 (% class="table-bordered" %)
239 |(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz
240 |(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10
241 |(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz
242 |(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10
243
244 When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
245
246 (% class="table-bordered" %)
247 |(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz
248 |(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12
249
250 When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
251
252 (% class="table-bordered" %)
253 |(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0
254 |(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit
255 |(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop
256 |(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz)
257
258 Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
259
260 == Carrier frequency ==
261
262 (% class="table-bordered" %)
263 |(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent
264 |(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz
265
266 This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
267
268 When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
269
270 When the carrier frequency is high, the motor loss will decrease and the motor temperature rise will decrease, but the AC drive loss will increase, the AC drive temperature rise will increase, and the interference will increase.
271
272 The effect of adjusting the carrier frequency on the following performance:
273
274 (% class="table-bordered" %)
275 |Carrier Frequency|Low  → High
276 |Motor Noise|Much → Little
277 |Output Current Waveform|Bad  → Good
278 |Motor Temperature Rise|High  →  Low
279 |AC Drive Temperature Rise|Low  → High
280 |Leakage Current|Low  → High
281 |External Radiation Interference|Low  → High
282
283 (% class="table-bordered" %)
284 |(% rowspan="2" %) **F0.17**|PWM Output Method Selection|Default|0
285 |Setting Range|(% colspan="2" %)(((
286 0:5/7-stage automatic switching
287
288 1:7-stage
289 )))
290
291 Method selection of PWM Output Method
292
293 (% class="table-bordered" %)
294 |(% rowspan="2" %)**F0.18**|Acceleration Time 1|Default|Model Dependent
295 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
296 |(% rowspan="2" %)**F0.19**|Deceleration Time 1|Default|Model Dependent
297 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
298
299 The acceleration time refers to the time required to accelerate from zero frequency to the acceleration/deceleration base frequency (determined by F0.24), see t1 in Figure 6-1-1.
300
301 The deceleration time refers to the time required to decelerate from the acceleration/deceleration base frequency (determined by F0.24) to zero frequency, see t2 in Figure 6-1-1.
302
303
304 (% style="text-align:center" %)
305 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a0c9063bc45a4ec4.png]]
306
307 Figure 6-1-1 Schematic diagram of acceleration and deceleration time
308
309 Pay attention to the difference between actual acceleration and deceleration time and set acceleration and deceleration time.
310
311 There are 4 groups of acceleration and deceleration time options
312
313 Group 1: F0.18. F0.19;
314
315 Group 2: F8.03. F8.04;
316
317 Group 3: F8.05. F8.06;
318
319 Group 4: F8.07. F8.08.
320
321 The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
322
323 (% class="table-bordered" %)
324 |(% rowspan="4" %)**F0.20**|(% colspan="2" %)Default setting restoring|Default|0
325 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)No operation
326 |1|(% colspan="2" %)Restore to factory default setting (not including motor parameters )
327 |2|(% colspan="2" %)clear fault record 
328
329 After changing this parameter to 1 or 2, all parameters will be initialized, and then this parameter will be reset to 0 automatically.
330
331 1: Restoring default settings,not including the F2 group parameters and error records.
332
333 2: Cleaning error records.
334
335 Cleaning error records. accumulative running time(F7.09). accumulative power-on time(F7.13). accumulative power consumption(F7.14).
336
337 (% class="table-bordered" %)
338 |(% rowspan="3" %)**F0.21**|(% colspan="2" %)Function code modification attribute|Default|0
339 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Modifiable
340 |1|(% colspan="2" %)Non-modifiable
341
342 Function code modification attribute,After locking, it can prevent the parameter value from being changed by mistake
343
344 0:All parameters can be changed
345
346 1:All parameters can only be viewed,but not changed,except F0.21
347
348 (% class="table-bordered" %)
349 |(% rowspan="3" %)**F0.22**|(% colspan="2" %)Digital setting frequency shutdown memory selection|Default|1
350 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Non-retentive
351 |1|(% colspan="2" %)Retentive
352
353 This function is only valid when frequency source is digital setting
354
355 0: Non-retentive, Refers to the digital set frequency value restored to the set value of F0.08 after the AC drive stops.
356
357 1: Retentive, Refers to the digital set frequency value restored to the set frequency after the AC drive stops.
358
359 (% class="table-bordered" %)
360 |(% rowspan="4" %)**F0.23**|(% colspan="2" %)Acceleration & deceleration time unit|Default|1
361 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)1s
362 |1|(% colspan="2" %)0.1s
363 |2|(% colspan="2" %)0.01s
364
365 This function is used to determine all acceleration and deceleration time units. Note that when the value is modified, the actual acceleration/deceleration time will also change accordingly (the position of the decimal point changes, and the actual display digits remain unchanged), so it is necessary to readjust the size of various acceleration/deceleration settings according to the situation. Pay attention to the following function codes: F0.18, F0.19, F8.01, F8.02, F8.03, F8.04, F8.05, F8.06, F8.07, F8.08.
366
367 (% class="table-bordered" %)
368 |(% rowspan="4" %)**F0.24**|(% colspan="2" %)Base Frequency of Acceleration & Deceleration Time|Default|0
369 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Maximum frequency(F0.10)
370 |1|(% colspan="2" %)Set Frequency
371 |2|(% colspan="2" %)100Hz
372
373 Define the frequency range corresponding to the acceleration and deceleration time. See Figure 6.1 Acceleration and deceleration time diagram
374
375 (% class="table-bordered" %)
376 |(% rowspan="3" %)**F0.25**|(% colspan="2" %)Cooling Fan Running Option|Default|0
377 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Automatic running
378 |1|(% colspan="2" %)Keep running when power on
379
380 This function is used to set the operating mode of the cooling fan. This setting can be adjusted according to changes in operating conditions to achieve a balance between maintaining continuous maximum heat dissipation and extending fan life.
381
382 0: Automatic running.When the motor is running, the fan runs; when the motor stops, the fan stops running after a delay of 30 seconds. When the temperature of the AC drive module exceeds 50 degrees, the fan also starts to run.
383
384 1: Keep running .The fan will keep running after AC drive is powered on
385
386 (% class="table-bordered" %)
387 |(% rowspan="3" %)**F0.26**|(% colspan="2" %)Frequency Command Decimal Point|Default|2
388 |(% rowspan="2" %)Setting range|1|(% colspan="2" %)One Decimal Place
389 |2|(% colspan="2" %)Two Decimal Place
390
391 The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
392
393 = F1 group start & stop control =
394
395 (% class="table-bordered" %)
396 |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
397 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Start directly(When the starting DC braking time is not 0, the DC braking will be performed first)
398 |1|(% colspan="2" %)Speed tracing and start
399 |2|(% colspan="2" %)Pre-excitation start(When the pre-excitation time is not 0, first pre-excitation and then start)
400
401 0: Start directly
402
403 if F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the startup frequency. When the setting is not 0, implement DC braking first and then start, which can solve the problem of reverse rotation when starting with small inertia load.
404
405 1: Speed tracing and start
406
407 The AC drive first detects the rotation and speed of the motor, and then starts according to the real-time speed. It is suitable for restarting after instantaneous power failure with large inertial loads or for smooth restarting of rotating equipment. Set accurate F2 group motor parameters to obtain better speed tracking and restart performance.
408
409 2: Pre-excitation start(Asynchronous motor)
410
411 Pre-excitation current and time share function codes with DC braking current and time.
412
413 If F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the starting frequency. When the setting is not 0, the pre-excitation is performed first and then the start is performed to improve the dynamic response speed.
414
415 (% class="table-bordered" %)
416 |(% rowspan="5" %)**F1.01**|(% colspan="2" %)Speed tracking mode|Default|0
417 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Start with the frequency of input power failure
418 |1|(% colspan="2" %)Start at zero speed
419 |2|(% colspan="2" %)Start at the maximum frequency F0.10
420 |3|(% colspan="2" %)Excitation search
421
422 Provide 4 speed tracking methods:
423
424 0: Tracking down from the frequency during a power outage, this method is usually used.
425
426 1: Start tracking upwards from 0 frequency, use in the case of a longer power outage and restart
427
428 2: Track down from the maximum frequency, generally used for generating loads
429
430 3: Output the excitation current to estimate the current frequency of the motor. After the estimation is successful, the inverter will start at the estimated frequency
431
432 (% class="table-bordered" %)
433 |(% rowspan="2" %)**F1.02**|Speed tracking coefficient|Default|20
434 |Setting Range|(% colspan="2" %)1~~100
435
436 In speed tracking restart mode, set the speed of speed tracking. The larger the parameter setting, the faster the tracking speed. But too large may cause unreliable tracking.
437
438 (% class="table-bordered" %)
439 |(% rowspan="2" %)**F1.03**|Starting frequency|Default|0.00Hz
440 |Setting Range|(% colspan="2" %)0.00Hz~~10.00Hz
441 |(% rowspan="2" %)**F1.04**|Hold time of starting frequency|Default|0.0s
442 |Setting Range|(% colspan="2" %)0.0s~~100.0s
443
444 To ensure the torque at startup, please set an appropriate startup frequency. In addition, in order to wait for the magnetic flux to be established when the motor starts, the starting frequency is maintained for a certain period of time and then the acceleration starts. The starting frequency value F1.03 is not limited by the lower limit frequency. If the given frequency (frequency source) is less than the starting frequency, the inverter cannot be started and is in the standby state. When switching between forward and reverse, the start frequency holding time has no effect. The hold time is not included in the acceleration time, but is included in the running time of the simple PLC.
445
446 (% class="table-bordered" %)
447 |(% rowspan="2" %)**F1.05**|DC braking current at start-up/Pre-excitation current|Default|0%
448 |Setting Range|(% colspan="2" %)0%~~100%
449 |(% rowspan="2" %)**F1.06**|DC braking time at start-up/Pre-excitation time|Default|0.0s
450 |Setting Range|(% colspan="2" %)0.0s~~100.0s
451
452 Starting DC braking is generally used to completely stop the motor before starting. Pre-excitation is generally used to establish a magnetic field before starting the motor to improve response speed.
453
454 If the start mode is direct start, the AC drive will first perform DC braking according to the set start DC braking current when starting, and then start running after the set start DC braking time. If the DC braking time is set to 0, it will start directly without DC braking. The greater the DC braking current, the greater the braking force. If the start mode is asynchronous motor pre-excitation start, the AC drive will first establish the magnetic field according to the set start pre-excitation current when starting, and then start running after the set start pre-excitation time. If the pre-excitation time is set to 0, it will start directly without pre-excitation. Start DC braking/pre-excitation current refers to the percentage relative to the AC drive rated current.
455
456 (% class="table-bordered" %)
457 |(% rowspan="4" %)**F1.07**|(% colspan="2" %)Acceleration & deceleration method|Default|0
458 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Linear acceleration/deceleration
459 |1|(% colspan="2" %)S-curve acceleration/deceleration A
460 |2|(% colspan="2" %)S-curve acceleration/deceleration B
461
462 Select the frequency change mode of the AC drive during the start and stop process.
463
464 0:Linear acceleration/deceleration
465
466 The output frequency increases or decreases linearly. The acceleration/deceleration time changes according to the set acceleration/deceleration time. VB series AC drive provides 4 kinds of acceleration and deceleration time. The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
467
468 1: S-curve acceleration/deceleration A
469
470 The output frequency increases or decreases according to the S curve. S curve is generally used in places where the start and stop process is relatively gentle, such as elevators and conveyor belts. Function codes F1.08 and F1.09 respectively define the time proportions of the start and end segments of S curve acceleration and deceleration
471
472 2: S-curve acceleration/deceleration B
473
474 In this acceleration and deceleration curve, the rated motor frequency fb is always the inflection point of the S curve. As shown in Figure 6-3. Generally used in the high-speed area above the rated frequency, where short-term acceleration and deceleration are required.
475
476 When the set frequency is above the rated frequency, the acceleration and deceleration time is:
477
478 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_840ad38ebbb1d9bd.gif]]
479
480 Among them, f is the set frequency; fb is the rated frequency of the motor;
481
482 T is the time to accelerate from 0 frequency to rated frequency fb.
483
484 (% class="table-bordered" %)
485 |(% rowspan="2" %)**F1.08**|Time proportion of S-curve start segment|Default|30.0%
486 |Setting Range|(% colspan="2" %)0.0%~~70.0%
487 |(% rowspan="2" %)**F1.09**|Time proportion of S-curve end segment|Default|30.0%
488 |Setting Range|(% colspan="2" %)0.0%~~70.0%
489
490 The function codes F1.08 and F1.09 respectively define the time proportions of the start section and the end section of S-curve acceleration/deceleration A, and both meet: F1.08 + F1.09 ≤ 100.0%.
491
492 In Figure 6.2-1, t1 is the parameter defined by parameter F1.08. During this period of time, the slope of the output frequency change gradually increases. t2 is the time defined by parameter F1.09, during which the slope of the output frequency change gradually changes to 0. During the time between t1 and t2, the slope of the output frequency change is fixed.
493
494 (% style="text-align:center" %)
495 [[image:图片1.png]]
496
497 Figure 6-2-1 S Schematic diagram of curve acceleration and deceleration A
498
499 (% style="text-align:center" %)
500 [[image:图片2.png]]
501
502 Figure 6-2-2 S Schematic diagram of curve acceleration and deceleration B
503
504 (% class="table-bordered" %)
505 |(% rowspan="3" %)**F1.10**|Stop mode|Default|0
506 |(% rowspan="2" %)Setting Range|0|Decelerate to stop 
507 |1|Free stopping
508
509 0: Decelerate to stop 
510
511 After the stop command is valid, the AC drive will reduce the output frequency according to the deceleration mode and the defined acceleration/deceleration time, and stop after the frequency drops to 0.
512
513 1: Free stopping
514
515 After the stop command is valid, the AC drive immediately terminates the output. The load stops freely according to mechanical inertia.
516
517 (% class="table-bordered" %)
518 |(% rowspan="2" %)**F1.11**|Trigging frequency of DC braking at stop|Default|0.00Hz
519 |Setting Range|(% colspan="2" %)0.00Hz~~max.frequency 
520 |(% rowspan="2" %)**F1.12**|Waiting time of DC braking at stop|Default|0.0s
521 |Setting Range|(% colspan="2" %)0.0s~~36.0s
522 |(% rowspan="2" %)**F1.13**|The current of DC braking at stop|Default|0%
523 |Setting Range|(% colspan="2" %)0%~~100%
524 |(% rowspan="2" %)**F1.14**|The time of DC braking at stop|Default|0.0s
525 |Setting Range|(% colspan="2" %)0.0s~~36.0s
526
527 Trigging frequency of DC braking at stop: During deceleration to stop, when the output frequency is less than this frequency, the DC braking process at stop will start.
528
529 Waiting time of DC braking at stop: When the output frequency is reduced to the start frequency of F1.11 stop DC braking during stop, the AC drive will stop output and start timing. After the delay time set by F1.12, DC will start again brake. It is used to prevent over-current faults caused by DC braking when the speed is high.
530
531 The current of DC braking at stop: refers to the added DC braking amount. The larger the value, the stronger the DC braking effect.
532
533 The time of DC braking at stop: the time added by the DC braking amount. When this value is 0, it means that there is no DC braking process and the AC drive will stop according to the set deceleration stop process.
534
535 (% style="text-align:center" %)
536 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_fcb1f31274fca2cb.png]]
537
538 Figure 6-2-3 Schematic diagram of DC braking at stop
539
540 (% class="table-bordered" %)
541 |(% rowspan="2" %)**F1.15**|Brake use rate|Default|100%
542 |Setting Range|(% colspan="2" %)0%~~100%
543
544 It is valid for inverters with built-in braking unit. The braking effect of the dynamic braking function can be adjusted.
545
546 (% class="table-bordered" %)
547 |(% rowspan="3" %)**F1.16**|Zero frequency output selection|Default|1
548 |(% rowspan="2" %)Setting Range|0|Open
549 |1|Closed
550
551 Setting whether the AC drive has output when running frequency is 0
552
553 = F2 group motor parameters =
554
555 (% class="table-bordered" %)
556 |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
557 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Ordinary asynchronous motor
558 |1|(% colspan="2" %)Variable frequency asynchronous motor
559 |2|(% colspan="2" %)Permanent magnet synchronous motor
560 |3|(% colspan="2" %)Single-phase asynchronous motor
561 |(% rowspan="2" %)**F2.01**|(% colspan="2" %)Motor rated power|Default|Model Dependent
562 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.1kW~~400.0kW
563 |(% rowspan="2" %)**F2.02**|(% colspan="2" %)Motor rated Voltage|Default|Model Dependent
564 |(% colspan="2" %)Setting Range|(% colspan="2" %)0V~~440V
565 |(% rowspan="2" %)**F2.03**|(% colspan="2" %)Motor rated current|Default|Model Dependent
566 |(% colspan="2" %)Setting Range|(% colspan="2" %)(((
567 0.01A~~655.35A(AC drive<=55kW)
568
569 0.1A~~6553.5A(AC drive >55kW)
570 )))
571 |(% rowspan="2" %)**F2.04**|(% colspan="2" %)Motor rated frequency|Default|Model Dependent
572 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequency F0.10
573 |(% rowspan="2" %)**F2.05**|(% colspan="2" %)Motor rated speed|Default|Model Dependent
574 |(% colspan="2" %)Setting Range|(% colspan="2" %)0rpm~~36000rpm
575
576 |** Caution**
577 |(((
578 ~1. Please set according to the nameplate parameters of the motor.
579
580 2. The excellent control performance of vector control requires accurate motor parameters, and accurate parameter identification comes from the correct setting of motor rated parameters.
581
582 3. In order to ensure the control performance, please configure the motor according to the standard adapted motor of the AC drive. If the power of the motor is too far from the standard adapted motor, the control performance of the inverter will be significantly reduced.
583 )))
584
585 (% class="table-bordered" %)
586 |(% rowspan="2" %)**F2.06**|Asynchronous motor stator resistance|Default|Model Dependent
587 |Setting Range|(% colspan="2" %)(((
588 0.001Ω~~65.535Ω(AC drive<=55kW)
589
590 0.0001Ω~~6.5535Ω(AC drive >55kW)
591 )))
592 |(% rowspan="2" %)**F2.07**|Asynchronous motor rotator resistance|Default|Model Dependent
593 |Setting Range|(% colspan="2" %)(((
594 0.001Ω~~65.535Ω(AC drive<=55kW)
595
596 0.0001Ω~~6.5535Ω(AC drive >55kW)
597 )))
598 |(% rowspan="2" %)**F2.08**|Asynchronous motor leakage inductance|Default|Model Dependent
599 |Setting Range|(% colspan="2" %)(((
600 0.01mH~~655.35mH(AC drive<=55kW)
601
602 0.001mH~~65.535mH(AC drive >55kW)
603 )))
604 |(% rowspan="2" %)**F2.09**|Asynchronous motor mutual inductance|Default|Model Dependent
605 |Setting Range|(% colspan="2" %)(((
606 0.1mH~~6553.5mH(AC drive<=55kW)
607
608 0.01mH~~655.35mH(AC drive >55kW)
609 )))
610 |(% rowspan="2" %)**F2.10**|Asynchronous motor no-load current|Default|Model Dependent
611 |Setting Range|(% colspan="2" %)(((
612 0.01A~~F2.03(AC drive<=55kW)
613
614 0.1A~~F2.03(AC drive >55kW)
615 )))
616
617 After the automatic tuning ends normally, the setting values of the asynchronous motor parameters (F2.06~~F2.10) are automatically updated.
618
619 After changing the motor rated power F2.01 each time, the AC drive will automatically restore the default standard motor parameters from F2.06 to F2.10. (Four-pole Y series asynchronous motor)
620
621 If it is impossible to tune the asynchronous motor in the site, you can manually input it with reference to the known parameters of similar motors.
622
623 (% class="table-bordered" %)
624 |(% rowspan="4" %)**F2.11**|(% colspan="2" %)Tuning selection|Default|0
625 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)0:No operation
626 |1|(% colspan="2" %)1:The asynchronous machine static tuning.
627 |2|(% colspan="2" %)2:The asynchronous machine is fully tuned
628
629 **✎Note**: Before tuning, you must set the correct motor type and rated parameters (F2.00-F2.05)
630
631 0: No operation, that is, tuning is prohibited.
632
633 1: The asynchronous motor is statically tuned, which is suitable for occasions where the motor and the load are not easily disconnected and cannot be rotated and tuned.
634
635 Action description: After setting the function code to 1, and pressing the RUN key to confirm, the AC drive will perform static tuning.
636
637 2: Complete tuning of asynchronous motor. In order to ensure the dynamic control performance of the AC drive, please select complete tuning, the motor must be disconnected from the load (no load) during rotary tuning.
638
639 After the complete tuning is selected, the AC drive will perform static tuning first. After the static tuning, the motor will accelerate to 80% of the rated frequency of the motor according to the acceleration time set by F0.18, and hold for a period of time, and then follow the deceleration time set by F0.19 Decelerate to zero speed and end the rotation tuning.
640
641 Action description: After setting the function code to 2, and pressing the RUN key to confirm, the AC drive will perform rotary tuning.
642
643 **Tuning instructions:**
644
645 When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
646
647 {{info}}
648 **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
649 {{/info}}
650
651 (% class="table-bordered" %)
652 |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
653 |(% rowspan="2" %)Setting Range|1|(% colspan="2" %)General model (G) (constant torque load model)
654 |2|(% colspan="2" %)Pump model (P) (draught fan, water pump type load model)
655
656 This parameter is only for users to view the factory model and cannot be changed.
657
658 1: Suitable for constant torque load with specified rated parameters
659
660 2: Suitable for variable torque loads with specified rated parameters (fans, water pump loads)
661
662 (% class="table-bordered" %)
663 |(% rowspan="2" %)**F2.13**|Single-phase motor turns ratio|Default|140
664 |Setting Range|(% colspan="2" %)50~~200
665
666 The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
667
668 = F3 group vector control parameters =
669
670 F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
671
672 (% class="table-bordered" %)
673 |(% rowspan="2" %)**F3.00**|Speed loop proportional gain 1|Default|30
674 |Setting range|(% colspan="2" %)1~~100
675 |(% rowspan="2" %)**F3.01**|Speed loop integral time 1|Default|0.50s
676 |Setting range|(% colspan="2" %)0.01s~~10.00s
677 |(% rowspan="2" %)**F3.02**|Switchover frequency 1|Default|5.00Hz
678 |Setting range|(% colspan="2" %)0.00~~F3.05
679 |(% rowspan="2" %)**F3.03**|Speed loop proportional gain 2|Default|20
680 |Setting range|(% colspan="2" %)0~~100
681 |(% rowspan="2" %)**F3.04**|Speed loop integral time 2|Default|1.00s
682 |Setting range|(% colspan="2" %)0.01s~~10.00s  
683 |(% rowspan="2" %)**F3.05**|Switchover frequency 2|Default|10.00Hz
684 |Setting range|(% colspan="2" %)F3.02~~Maximum frequency F0.10
685
686 F3.00 and F3.01 are PI adjustment parameters when the running frequency is lower than switchover frequency 1 (F3.02).
687
688 F3.03 and F4.04 are PI adjustment parameters for the frequency band between the operating frequency greater than the switchover frequency 2.
689
690 The PI parameters in the frequency band between switchover frequency 1 and switchover frequency 2 are linear switching of two sets of PI parameters, as shown in the following figure:
691
692 (% style="text-align:center" %)
693 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3a0fe23ce96d4424.png]]
694
695 Figure 6-4-1 Schematic diagram of PI parameters
696
697 By setting the proportional coefficient and integral time of the speed regulator, the speed dynamic response characteristics of the vector control can be adjusted. Increasing the proportional gain and reducing the integral time can speed up the dynamic response of the speed loop. If the proportional gain is too large or the integral time is too small, the system may oscillate.
698
699 Suggested adjustment method:
700
701 If the factory parameters cannot meet the requirements, fine-tune the parameters based on the factory value: first increase the proportional gain to ensure that the system does not oscillate; then reduce the integration time to make the system have faster response characteristics and smaller overshoot.
702
703 Note: Improper setting of PI parameters may result in excessive speed overshoot. Even when the overshoot falls back, an overvoltage fault occurs.
704
705 (% class="table-bordered" %)
706 |(% rowspan="2" %)**F3.06**|Slip compensation coefficient of vector control|Default|100%
707 |Setting range|(% colspan="2" %)50%~~200%
708
709 In the speed sensorless vector control mode, this parameter is used to adjust the speed stability accuracy of the motor. When the speed of the motor is heavy, increase this parameter, otherwise decrease this parameter.
710
711 (% class="table-bordered" %)
712 |(% rowspan="2" %)**F3.07**|Speed loop filter time constant.|Default|0.000s
713 |Setting range|(% colspan="2" %)0.000s~~0.100s  
714
715 In vector control mode, the output of the speed loop regulator is the torque current command, and this parameter is used to filter the torque command. Generally, this parameter does not need to be adjusted. When the speed fluctuates greatly, the filter time can be appropriately increased; if the motor oscillates, the parameter should be appropriately reduced.
716
717 The speed loop filter time constant is small, the output torque of the AC drive may vary greatly, but the response is fast.
718
719 (% class="table-bordered" %)
720 |(% rowspan="2" %)**F3.08**|Speed control torque upper limit|Default|150.0%
721 |Setting range|(% colspan="2" %)0.0%~~200.0% 
722
723 In speed control mode, the maximum output torque of the inverter is controlled by F3.08.
724
725 (% class="table-bordered" %)
726 |(% rowspan="3" %)**F3.09**|(% colspan="2" %)Speed/torque control|Default|0
727 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Speed Control
728 |1|(% colspan="2" %)Torque Control
729
730 To select whether the AC drive control mode is speed control or torque control, this function code needs to be judged together with terminal function 29: torque control prohibition and 46: speed control/torque control switching.
731
732 When the torque control prohibition is valid, the AC drive is speed control.
733
734 When the torque control prohibition is invalid, if the speed control/torque control switch is invalid, the control mode is determined by F3.09; if the speed control/torque control switch is valid, the value of F3.09 is reversed.
735
736 When it is torque control, the AC drive running frequency is given by F3.12, F3.13, and the acceleration/deceleration time is given by F3.14, F3.15.
737
738 (% class="table-bordered" %)
739 |(% rowspan="10" %)**F3.10**|(% colspan="2" %)Torque upper limit source in torque control|Default|0
740 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)Digital setting(F3.11)
741 |1|(% colspan="2" %)AI1
742 |2|(% colspan="2" %)AI2
743 |3|(% colspan="2" %)Reserved
744 |4|(% colspan="2" %)Reserved
745 |5|(% colspan="2" %)Communication setting
746 |6|(% colspan="2" %)MIN(AI1,AI2)
747 |7|(% colspan="2" %)MAX(AI1,AI2)
748 |(% colspan="3" %)The full scale of options 1~~7 corresponds to F3.11
749 |(% rowspan="2" %)**F3.11**|(% colspan="2" %)Digital setting of torque upper limit in torque control|Default|150.0%
750 |(% colspan="2" %)Setting range|(% colspan="2" %)-200.0%~~200.0%
751
752 F3.10 is used to select the torque upper limit setting source in the torque control mode. When setting by analog, 100% of analog input setting corresponds to F3.11, and 100% of setting corresponds to AC drive matching motor rated torque.
753
754 (% class="table-bordered" %)
755 |(% rowspan="2" %)**F3.12**|Forward maximum frequency of torque control|Default|50.00Hz
756 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10)
757 |(% rowspan="2" %)**F3.13**|Reverse maximum frequency of torque control|Default|50.00Hz
758 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10) 
759
760 Set the maximum forward or reverse running frequency of the AC drive in torque control mode.
761
762 (% class="table-bordered" %)
763 |(% rowspan="2" %)**F3.14**|Acceleration time of torque control|Default|0.00s
764 |Setting range|(% colspan="2" %)0.00s~~65000s
765 |(% rowspan="2" %)**F3.15**|Deceleration time of torque control|Default|0.00s
766 |Setting range|(% colspan="2" %)0.00s~~65000s 
767
768 Set the frequency acceleration/deceleration time of the AC drive in torque control mode.
769
770 (% class="table-bordered" %)
771 |(% rowspan="2" %)**F3.16**|Torque stiffness coefficient|Default|100.00%
772 |Setting range|(% colspan="2" %)10.0%~~120.0% 
773
774 In the torque control mode, when the set torque is small, this coefficient can be appropriately reduced to obtain a stable control effect, otherwise, the coefficient can be appropriately increased to obtain a stable control effect.
775
776 (% class="table-bordered" %)
777 |(% rowspan="2" %)**F3.17**|M axis current loop proportional gain|Default|2000
778 |Setting range|(% colspan="2" %)0~~60000 
779 |(% rowspan="2" %)**F3.18**|M axis current loop integral gain|Default|1300
780 |Setting range|(% colspan="2" %)0~~60000 
781 |(% rowspan="2" %)**F3.19**|T axis current loop proportional gain|Default|2000
782 |Setting range|(% colspan="2" %)0~~60000  
783 |(% rowspan="2" %)**F3.20**|T axis current loop integral gain|Default|1300
784 |Setting range|(% colspan="2" %)0~~60000  
785
786 The current loop control parameters in the MT coordinate system and the synchronous motor dq coordinate system will be automatically identified after complete parameter identification, and generally do not need to be modified.
787
788 The bandwidth of the current loop directly determines the response speed of the electromagnetic torque. If the adjustment parameters are too strong, the current loop will be out of adjustment, causing the entire control loop to oscillate; when the current oscillates and torque fluctuations are large, you can manually adjust this group of parameters to improve the effect .
789
790 (% class="table-bordered" %)
791 |(% rowspan="3" %)**F3.21**|(% colspan="2" %)The speed loop integral separation|Default|0
792 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
793 |1|(% colspan="2" %)Valid
794
795 (% class="table-bordered" %)
796 |(% rowspan="2" %)**F3.24**|Torque control static friction compensation coefficient|Default|100
797 |Setting range|(% colspan="2" %)100~~300
798
799 (% class="table-bordered" %)
800 |(% rowspan="2" %)**F3.25**|Torque mode friction compensation time|Default|0
801 |Setting range|(% colspan="2" %)0~~100s
802
803 During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
804
805 = F4 group v/f control parameters =
806
807 This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
808
809 V/F control is suitable for general loads such as fans and water pumps, or applications where one AC drive has multiple motors, or the power of the AC drive is one level lower or two levels higher than the motor power.
810
811 (% class="table-bordered" %)
812 |(% rowspan="7" %)**F4.00**|(% colspan="2" %)V/F curve setting|Default|0
813 |(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Linear V/F
814 |1|(% colspan="2" %)Multi-point V/F
815 |2|(% colspan="2" %)Square V/F
816 |3~~9|(% colspan="2" %)Reserved
817 |10|(% colspan="2" %)V/F complete separation
818 |11|(% colspan="2" %)V/F half separation
819
820 For fans and pumps, you can choose square V/F control.
821
822 Common VF control method
823
824 0: Straight line V/F curve. Suitable for ordinary constant torque load.
825
826 1: Multi-point V/F curve. Suitable for special loads such as dehydrators and centrifuges.
827
828 2: Square V/F curve. Suitable for centrifugal loads such as fans and pumps.
829
830 VF separation control method
831
832 10: VF complete separation mode. At this time, the output voltage is set separately according to the setting mode of F4.13 (VF separation voltage source).
833
834 11: VF semi-separated mode.
835
836 In this case, V and F are proportional, and the voltage source is only used to adjust the slope of V/F. At this time, the relationship between V and F is related to the rated voltage and rated frequency of the motor set in group F2. If the voltage source input is X (X is a value of 0~~100%), then: V/F=2 * X * (motor rated voltage)/(motor rated frequency)
837
838 (% class="table-bordered" %)
839 |(% rowspan="2" %)**F4.01**|Torque boost|Default|Model dependent
840 |Setting Range|(% colspan="2" %)0.0%~~30%  
841 |(% rowspan="2" %)**F4.02**|Cut-off frequency of torque boost|Default|50.00Hz
842 |Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequencyF0.10
843
844 In order to compensate the low-frequency torque characteristics of V/F control, some boost compensation is made for the AC drive output voltage at low frequency.
845
846 If the torque boost is set too large, the motor will easily overheat and the AC drive will easily overcurrent. Generally, the torque boost should not exceed 8.0%. Effective adjustment of this parameter can effectively avoid overcurrent during starting. For larger loads, it is recommended to increase this parameter, and reduce this parameter setting when the load is lighter. When the torque boost is set to 0.0, the AC drive is automatic torque boost. Torque boost torque cut-off frequency: below this frequency, the torque boost torque is valid, if the set frequency is exceeded, the torque boost is invalid, as shown in Figure 6.6.
847
848 (((
849 Output frequency
850
851 (% style="text-align:center" %)
852 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a72975cd3987dca.png]]
853 )))
854
855 Figure 6-5-1 Schematic diagram of manual torque boost
856
857 (% class="table-bordered" %)
858 |(% rowspan="2" %)**F4.03**|Multipoint V/F frequency 1|Default|3.00Hz
859 |Setting Range|(% colspan="2" %)0.00Hz~~F4.05 
860 |(% rowspan="2" %)**F4.04**|Multipoint V/F voltage 1|Default|10.0%
861 |Setting Range|(% colspan="2" %)0.0%~~100.0%
862 |(% rowspan="2" %)**F4.05**|Multipoint V/F frequency 2|Default|5.00Hz
863 |Setting Range|(% colspan="2" %)F4.03~~F4.07 
864 |(% rowspan="2" %)**F4.06**|Multipoint V/F voltage 2|Default|15.0%
865 |Setting Range|(% colspan="2" %)0.0%~~100.0%
866 |(% rowspan="2" %)**F4.07**|Multipoint V/F frequency 3|Default|8.00Hz
867 |Setting Range|(% colspan="2" %)F4.05~~Motor rated frequency(F2.04)
868 |(% rowspan="2" %)**F4.08**|Multipoint V/F voltage 3|Default|22.0%
869 |Setting Range|(% colspan="2" %)0.0%~~100.0%
870
871 Six parameters F4.03~~F4.08 define multi-segment V/F curve. The set value of the V/F curve is usually set according to the load characteristics of the motor. Note: V1<V2<V3, F1<F2<F3. Setting the voltage too high at low frequency may cause the motor to overheat or even burn, and the AC drive may over-current stall or over-current
872
873 protection.
874
875 (% style="text-align:center" %)
876 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_f550fcd15ecbb3b8.png]]
877
878 Figure 6-5-2 Schematic diagram of V/F curve setting
879
880 (% class="table-bordered" %)
881 |(% rowspan="2" %)**F4.09**|V/F slip compensation|Default|0.0%
882 |Setting Range|(% colspan="2" %)0%~~200.0%
883
884 Effective for V/F control. Setting this parameter can compensate for the slip caused by the load during V/F control, and reduce the change in motor speed with load changes during V/F control. Generally 100% corresponds to the rated slip when the motor is loaded with rated load. The slip coefficient can be adjusted according to the following principles: when the load is rated load and the slip compensation coefficient is set to 100%, the speed of the motor with the inverter is basically close to the given speed.
885
886 (% class="table-bordered" %)
887 |(% rowspan="2" %)**F4.10**|V/F over-excitation gain|Default|0
888 |Setting Range|(% colspan="2" %)0~~200
889
890 The function of the VF overexcitation gain function is to suppress the rise of the bus voltage during the deceleration of the AC drive, and to prevent the bus voltage from exceeding the overvoltage protection limit value and causing an overvoltage fault. The greater the overexcitation gain, the stronger the suppression effect. The setting instructions are as follows:
891
892 ~1. Generally, the overexcitation gain should be set to 0 when the inertia is small, and the overexcitation gain should be appropriately increased when the inertia is large.
893
894 2. If there is a braking resistor, please set the overexcitation gain to 0
895
896 (% class="table-bordered" %)
897 |(% rowspan="2" %)**F4.11**|V/F oscillation suppression gain|Default|Model dependent
898 |Setting Range|(% colspan="2" %)0~~100
899
900 Please select this gain as 0 when the motor has no oscillation. Only when the motor obviously oscillates and cannot run normally, increase the gain appropriately. The larger the gain, the more obvious the suppression of oscillation. When using the oscillation suppression function, it is required that the motor rated current and no-load current parameter settings have little deviation from the actual values. The method of selecting the gain is to choose as small as possible under the premise of effectively suppressing the oscillation, so as not to have too much influence on the VF operation.
901
902 (% class="table-bordered" %)
903 |(% rowspan="11" %)**F4.12**|(% colspan="2" %)Voltage source for V/F separation|Default|0
904 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting(F4.14) 
905 |1|(% colspan="2" %)AI1
906 |2|(% colspan="2" %)AI2
907 |3|(% colspan="2" %)Reserved
908 |4|(% colspan="2" %)Reserved
909 |5|(% colspan="2" %)Multi-speed instructions
910 |6|(% colspan="2" %)Simple PLC
911 |7|(% colspan="2" %)PID
912 |8|(% colspan="2" %)Communication setting
913 |(% colspan="3" %)(100% corresponds to the rated motor voltage)
914
915 Define the voltage source for VF separation. The output voltage can come from digital setting (F4.13), or from analog input channel, multi-speed command, PLC, PID or communication setting. When using non-digital setting of output voltage, 100% of the input setting corresponds to the rated voltage of the motor, and the absolute value of the input setting is taken as the effective setting value.
916
917 0: Digital setting (F4.13); The voltage is directly set through F4.13.
918
919 1: AI1 2: AI2 voltage is determined by analog input terminal, AI input 0~~100% corresponds to output voltage 0V~~rated voltage of motor.
920
921 4: Reserved
922
923 5: Multi-speed instructions
924
925 When the voltage source is multi-speed, you need to set the F4 group "input terminal" and FC group "multi-speed and PLC" parameters to determine the corresponding relationship between the given signal and the given voltage (100% corresponds to the rated motor voltage).
926
927 6: Simple PLC
928
929 When the voltage source is a simple PLC, you need to set the FC group "multi-speed and PLC" parameters to determine the given output voltage (100% corresponds to the rated voltage of the motor).
930
931 7: PID
932
933 Generate output voltage according to PID closed loop. For details, please refer to the introduction of FA group PID.
934
935 8: Communication setting
936
937 Refers to the voltage given by the host computer through communication (100% corresponds to the rated voltage of the motor).
938
939 (% class="table-bordered" %)
940 |(% rowspan="2" %)**F4.13**|Voltage digital setting for V/F separation|Default|0V
941 |Setting Range|(% colspan="2" %)0V~~F2.02
942
943 When the voltage source is digital setting, this value is directly used as the target value of the output voltage.
944
945 (% class="table-bordered" %)
946 |(% rowspan="2" %)**F4.14**|Voltage rise time of separation|Default|0.0s
947 |Setting Range|(% colspan="2" %)0.0s~~1000.0s
948
949 VF separation rise time refers to the time required for the output voltage to change from 0V to the rated voltage of the motor.
950
951 As Figure 6-5-3:
952
953 (((
954 (% style="text-align:center" %)
955 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d312ba31a6b637aa.png]]
956 )))
957
958 Figure 6-5-3 Schematic diagram of V/F separation
959
960 (% class="table-bordered" %)
961 |(% rowspan="2" %)**F4.16**|Auto voltage regulation (AVR)|Default|1
962 |Setting Range|(% colspan="2" %)(((
963 0:Invalid
964
965 1:Only valid during deceleration
966
967 2:Only valid during acceleration
968
969 3:Valid
970 )))
971
972 According to the actual use, select the situation where the AVR function is enabled.
973
974 = F5 group input terminals =
975
976 The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
977
978 (% class="table-bordered" %)
979 |**F5.00**|DI1 terminal function selection|Default|1(Forward Running)
980 |**F5.01**|DI2 terminal function selection|Default|2(Reverse Running)
981 |**F5.02**|DI3 terminal function selection|Default|9(Reset Faults)
982 |**F5.03**|DI4 terminal function selection|Default|12(Multi-speed instruction terminal 1)
983 |**F5.04**|DI5 terminal function selection|Default|13(Multi-speed instruction terminal 2)
984 |**F5.05**|DI6 terminal function selection|Default|0
985 |**F5.06~~F5.09**|(% colspan="3" %)Reserved
986 |**F5.10**|VDI terminal function selection|Default|0
987
988 These parameters are used to set the corresponding function of the digital multi-function input terminals
989
990 (% class="table-bordered" %)
991 |(% style="width:121px" %)**Set Value**|(% style="width:540px" %)**Function**|(% style="width:829px" %)**Description**
992 |(% style="width:121px" %)0|(% style="width:540px" %)No function|(% style="width:829px" %)The AC drive will not operate even if a signal is input. The unused terminals can be set to have no function to prevent malfunction.
993 |(% style="width:121px" %)1|(% style="width:540px" %)Forward Running(FWD)|(% rowspan="2" style="width:829px" %)Control the forward and reverse rotation of the inverter through external terminals.
994 |(% style="width:121px" %)2|(% style="width:540px" %)Reverse Running(REV)
995 |(% style="width:121px" %)3|(% style="width:540px" %)Three-wire operation control|(% style="width:829px" %)Use this terminal to determine that the inverter operating mode is three-wire control mode. For details, please refer to F5.16 three-wire control mode function code introduction.
996 |(% style="width:121px" %)4|(% style="width:540px" %)Forward point movement (FJOG)|(% rowspan="2" style="width:829px" %)FJOG is jog forward running, RJOG is jog reverse running. Refer to the detailed description of F8.00, F8.01, F8.02 function codes for frequency and jog acceleration/deceleration time during jog operation.
997 |(% style="width:121px" %)5|(% style="width:540px" %)Reverse point movement(RJOG)
998 |(% style="width:121px" %)6|(% style="width:540px" %)Terminal UP|(% rowspan="2" style="width:829px" %)When the frequency is given by the external terminal, modify the frequency increase command and decrease command. When the frequency source is set to digital setting, the set frequency can be adjusted up and down.
999 |(% style="width:121px" %)7|(% style="width:540px" %)Terminal DOWN
1000 |(% style="width:121px" %)8|(% style="width:540px" %)Free stopping|(% style="width:829px" %)(((
1001 The inverter blocks the output, and the motor stopping process is not controlled by the inverter. For large inertia loads and when there is no requirement for stopping time, the method is often adopted.
1002
1003 This method has the same meaning as the free stop described in F1.10.
1004 )))
1005 |(% style="width:121px" %)9|(% style="width:540px" %)Reset Faults|(% style="width:829px" %)External fault reset function. It has the same function as the RESET key on the keyboard. Use this function to realize remote fault reset.
1006 |(% style="width:121px" %)10|(% style="width:540px" %)Run pause|(% style="width:829px" %)The inverter decelerates to stop, but all operating parameters are in the memory state. Such as PLC parameters, swing frequency parameters, PID parameters. After this signal disappears, the inverter will resume running to the state before stopping.
1007 |(% style="width:121px" %)11|(% style="width:540px" %)External faults normally open input|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1008 |(% style="width:121px" %)12|(% style="width:540px" %)Multi-speed instruction terminal 1|(% rowspan="4" style="width:829px" %)(((
1009 A total of 16-speed settings can be achieved through the digital state combination of these four terminals.
1010
1011 See attached sheet 1 for detailed combination.
1012 )))
1013 |(% style="width:121px" %)13|(% style="width:540px" %)Multi-speed instruction terminal 2
1014 |(% style="width:121px" %)14|(% style="width:540px" %)Multi-speed instruction terminal 3
1015 |(% style="width:121px" %)15|(% style="width:540px" %)Multi-speed instruction terminal 4
1016 |(% style="width:121px" %)16|(% style="width:540px" %)Terminal 1 for acceleration/deceleration time selection|(% rowspan="2" style="width:829px" %)Four types of acceleration and deceleration time can be selected through the combination of the digital states of these two terminals. See attached sheet 2 for detailed combination.
1017 |(% style="width:121px" %)17|(% style="width:540px" %)Terminal 2 for acceleration/deceleration time selection
1018 |(% style="width:121px" %)18|(% style="width:540px" %)Frequency source switchover(terminal and keypad)|(% style="width:829px" %)(((
1019 When the frequency source selection (F0.07 ones place) is set to 2, the main frequency source X and auxiliary frequency source Y are switched through this terminal.
1020
1021 When the frequency source selection (F0.07 ones place) is set to 3, this terminal is used to switch between the main frequency source X and the main and auxiliary calculation results.
1022
1023 When the frequency source selection (F0.07 ones place) is set to 4, use this terminal to switch between the auxiliary frequency source Y and the main and auxiliary calculation results
1024 )))
1025 |(% style="width:121px" %)19|(% style="width:540px" %)UP/DOWN setting clear(terminal and keypad)|(% style="width:829px" %)When the frequency source is a digital frequency setting, this terminal can be used to clear the frequency value changed by UP/DOWN and restore the reference frequency to the value set by F0.08.
1026 |(% style="width:121px" %)20|(% style="width:540px" %)Command source switchover terminal|(% style="width:829px" %)(((
1027 When the command source (F0.01) is set to 1, this terminal can be used to switch between terminal control and keyboard control.
1028
1029 When the command source (F0.01) is set to 2, the communication control and keyboard control can be switched through this terminal.
1030 )))
1031 |(% style="width:121px" %)21|(% style="width:540px" %)Acceleration/deceleration prohibited|(% style="width:829px" %)Ensure that the inverter is not affected by external signals (except for the stop command) and maintain the current output frequency.
1032 |(% style="width:121px" %)22|(% style="width:540px" %)PID pause|(% style="width:829px" %)PID is temporarily invalid and the inverter maintains the current frequency output.
1033 |(% style="width:121px" %)23|(% style="width:540px" %)PLC status reset|(% style="width:829px" %)The PLC pauses during execution, and can be restored to the initial state of the simple PLC through this terminal when it is running again.
1034 |(% style="width:121px" %)24|(% style="width:540px" %)Swing pause|(% style="width:829px" %)The inverter outputs at the central frequency. The swing frequency is paused.
1035 |(% style="width:121px" %)25|(% style="width:540px" %)Counter input|(% style="width:829px" %)The input terminal for counting pulses.
1036 |(% style="width:121px" %)26|(% style="width:540px" %)Counter reset|(% style="width:829px" %)Clear the counter status.
1037 |(% style="width:121px" %)27|(% style="width:540px" %)Length count input|(% style="width:829px" %)The input terminal for length count.
1038 |(% style="width:121px" %)28|(% style="width:540px" %)Length reset|(% style="width:829px" %)Clear the length.
1039 |(% style="width:121px" %)29|(% style="width:540px" %)Torque control prohibited|(% style="width:829px" %)The inverter is prohibited from torque control mode.
1040 |(% style="width:121px" %)30|(% style="width:540px" %)Reserved|(% style="width:829px" %)Reserved
1041 |(% style="width:121px" %)31|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1042 |(% style="width:121px" %)32|(% style="width:540px" %)Immediate DC braking|(% style="width:829px" %)When this terminal is valid, the inverter directly switches to the DC braking state
1043 |(% style="width:121px" %)33|(% style="width:540px" %)External faults normally closed input|(% style="width:829px" %)When the external fault signal is sent to the inverter, the inverter reports a fault and stops.
1044 |(% style="width:121px" %)34|(% style="width:540px" %)Frequency setting effect terminal|(% style="width:829px" %)If the function of this terminal is set, when the frequency is modified, the effective time of the modification is controlled by this terminal
1045 |(% style="width:121px" %)35|(% style="width:540px" %)Reverse PID action direction|(% style="width:829px" %)If this terminal is valid, the PID action direction is opposite to the direction set by F9.03
1046 |(% style="width:121px" %)36|(% style="width:540px" %)External stop terminal 1|(% style="width:829px" %)During keyboard control, this terminal can be used to stop, which is equivalent to the STOP key on the keypad
1047 |(% style="width:121px" %)37|(% style="width:540px" %)Command source switchover terminal 1|(% style="width:829px" %)Used to switch between terminal control and communication control. When this terminal is valid if F0.02 is set to terminal control, it will switch to communication control; if F0.02 is set to communication control, it will switch to terminal control.
1048 |(% style="width:121px" %)38|(% style="width:540px" %)PID integral pause|(% style="width:829px" %)If this terminal is valid, the PID integral function is suspended, but the proportional regulation and differential regulation still function.
1049 |(% style="width:121px" %)39|(% style="width:540px" %)Frequency source X and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source X is replaced by the preset frequency (F0.08)
1050 |(% style="width:121px" %)40|(% style="width:540px" %)Frequency source Y and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source Y is replaced by the preset frequency (F0.08)
1051 |(% style="width:121px" %)41|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1052 |(% style="width:121px" %)42|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1053 |(% style="width:121px" %)43|(% style="width:540px" %)PID parameter switchover terminal|(% style="width:829px" %)When F9.18 (PID parameter switching condition) is DI terminal, when this terminal is valid, PID uses F9.15~~F9.17 parameters. When the terminal is invalid, use F9.05~~F9.07 parameters
1054 |(% style="width:121px" %)44|(% style="width:540px" %)User-defined fault 1|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1055 |(% style="width:121px" %)45|(% style="width:540px" %)User-defined fault 2|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1056 |(% style="width:121px" %)46|(% style="width:540px" %)Speed control/torque control switchover|(% style="width:829px" %)Switch the inverter to run in torque control or speed control mode. If this terminal is invalid, it runs in the mode defined by F3.09 (speed/torque control mode), and if it is valid, it switches to the other mode.
1057 |(% style="width:121px" %)47|(% style="width:540px" %)Emergency stop|(% style="width:829px" %)If this terminal is valid, the inverter will stop at the fastest speed
1058 |(% style="width:121px" %)48|(% style="width:540px" %)External stopping terminal 22|(% style="width:829px" %)Under any control mode, this terminal can be used to stop, and stop according to deceleration time 4
1059 |(% style="width:121px" %)49|(% style="width:540px" %)Deceleration DC braking|(% style="width:829px" %)If this terminal is valid, the inverter will first decelerate to the start frequency of stop DC braking and then switch to DC braking state
1060 |(% style="width:121px" %)50|(% style="width:540px" %)Clear the current running time|(% style="width:829px" %)If this terminal is valid, the inverter's current running timing time will be cleared, and this function will be used for timing running (F8.42).
1061
1062 Attached sheet: Multi-speed function description
1063
1064 (% class="table-bordered" %)
1065 |**K4**|**K3**|**K2**|**K1**|**Set Frequency**|**Related Parameter**
1066 |OFF|OFF|OFF|OFF|Multistage Speed0|FD.00
1067 |OFF|OFF|OFF|ON|Multistage Speed1|FD.01
1068 |OFF|OFF|ON|OFF|Multistage Speed2|FD.02
1069 |OFF|OFF|ON|ON|Multistage Speed3|FD.03
1070 |OFF|ON|OFF|OFF|Multistage Speed4|FD.04
1071 |OFF|ON|OFF|ON|Multistage Speed5|FD.05
1072 |OFF|ON|ON|OFF|Multistage Speed6|FD.06
1073 |OFF|ON|ON|ON|Multistage Speed7|FD.07
1074 |ON|OFF|OFF|OFF|Multistage Speed8|FD.08
1075 |ON|OFF|OFF|ON|Multistage Speed9|FD.09
1076 |ON|OFF|ON|OFF|Multistage Speed10|FD.10
1077 |ON|OFF|ON|ON|Multistage Speed11|FD.11
1078 |ON|ON|OFF|OFF|Multistage Speed12|FD.12
1079 |ON|ON|OFF|ON|Multistage Speed13|FD.13
1080 |ON|ON|ON|OFF|Multistage Speed14|FD.14
1081 |ON|ON|ON|ON|Multistage Speed15|FD.15
1082
1083 Attached sheet: description of acceleration and deceleration time selection
1084
1085 (% class="table-bordered" %)
1086 |**Terminal 2**|**Terminal 1**|**Selection of acceleration/deceleration time**|**Related Parameter**
1087 |OFF|OFF|Acceleration/Deceleration Time1|F0.18. F0.19
1088 |OFF|ON|Acceleration/Deceleration Time2|F8.03. F8.04
1089 |ON|OFF|Acceleration/Deceleration Time3|F8.05. F8.06
1090 |ON|ON|Acceleration/Deceleration Time4|F8.07. F8.08
1091
1092 (% class="table-bordered" %)
1093 |(% rowspan="2" %)**F5.15**|DI filter time|Default|0.010s
1094 |Setting range|(% colspan="2" %)0.000s~~1.000s 
1095
1096 Set the sensitivity of the DI terminal. If the digital input terminal is susceptible to interference and cause malfunction, you can increase this parameter to increase the anti-interference ability, but cause the sensitivity of the DI terminal to decrease.
1097
1098 (% class="table-bordered" %)
1099 |(% rowspan="5" %)**F5.16**|(% colspan="2" %)Terminal command mode|Default|0
1100 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)Two-line mode 1
1101 |1|(% colspan="2" %)Two-line mode 2
1102 |2|(% colspan="2" %)Three-line mode 1
1103 |3|(% colspan="2" %)Three-line mode 2
1104
1105 This parameter defines four different ways to control the operation of the inverter through external terminals.
1106
1107 0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1108
1109 [[image:1681697850903-377.png||height="282" width="633"]]
1110
1111 1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV.
1112
1113 [[image:1681697969422-504.png]]
1114
1115 2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively.
1116
1117 DIN is pulse effective, user need to disconnect the Din terminal signal when stop.
1118
1119 Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1120
1121 [[image:1681698530367-261.png||height="298" width="628"]]
1122
1123 3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1124
1125 Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1126
1127 [[image:1681698557086-403.png||height="267" width="625"]]
1128
1129
1130 (% class="table-bordered" %)
1131 |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1132 |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
1133
1134 Frequency change rate while using terminal UP/DOWN function
1135
1136 (% class="table-bordered" %)
1137 |(% rowspan="2" %)**F5.18**|AI1 minimum input|Default|0.00V
1138 |Setting range|(% colspan="2" %)0.00V~~F5.15  
1139 |(% rowspan="2" %)**F5.19**|Percentage rate of AI1 minimum input|Default|0.0%
1140 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1141 |(% rowspan="2" %)**F5.20**|AI1 maximum input|Default|10.00V
1142 |Setting range|(% colspan="2" %)F5.18~~10.00V  
1143 |(% rowspan="2" %)**F5.21**|Percentage rate of AI1 maximum input|Default|100.0%
1144 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1145 |(% rowspan="2" %)**F5.22**|AI1 filter time|Default|0.10s
1146 |Setting range|(% colspan="2" %)0.00s~~10.00s
1147
1148 The above function code defines the relationship between the analog input voltage and the set value represented by the analog input. When the analog input voltage exceeds the set maximum input range, the other part will be calculated as the maximum input. When the analog input voltage exceeds the set minimum input The range, the outside part will be calculated based on the AI minimum input.
1149
1150 When analog input is current input, 1mA current is equivalent to 0.5V voltage. In different applications, the nominal value corresponding to 100% of the analog setting is different. For details, please refer to the description of each application part.
1151
1152 The following figures illustrate several settings:
1153
1154 (% style="text-align:center" %)
1155 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_18e4cbe6e1292696.png]]
1156
1157 Figure 6-6-1 Correspondence between analog reference and setting
1158
1159 (% class="table-bordered" %)
1160 |(% rowspan="2" %)**F5.23**|AI2 minimum input|Default|0.00V
1161 |Setting range|(% colspan="2" %)0.00V~~F5.25  
1162 |(% rowspan="2" %)**F5.24**|Percentage rate of AI2 minimum input|Default|0.0%
1163 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1164 |(% rowspan="2" %)**F5.25**|AI2 maximum input|Default|10.00V
1165 |Setting range|(% colspan="2" %)F5.23~~10.00V  
1166 |(% rowspan="2" %)**F5.26**|Percentage rate of AI2 maximum input|Default|100.0%
1167 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1168 |(% rowspan="2" %)**F5.27**|AI2 filter time|Default|0.10s
1169 |Setting range|(% colspan="2" %)0.00s~~10.00s
1170
1171 The function of AI2 is similar to the setting method of AI1.
1172
1173 (% class="table-bordered" %)
1174 |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1175 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1176 |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
1177 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1178 |(% rowspan="2" %)**F5.35**|DI2 enable delay time|Default|0.0s
1179 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1180 |(% rowspan="2" %)**F5.36**|DI2 disable delay time|Default|0.0s
1181 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1182
1183 Set the delay time from DI terminal status change to inverter response.
1184
1185 Currently only DI1\DI2 has the function of setting the delay time.
1186
1187 (% class="table-bordered" %)
1188 |(% rowspan="8" %)**F5.37**|(% colspan="2" %)DI valid mode selection 1|Default|00000
1189 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI1 terminal valid state setting
1190 |0|(% colspan="2" %)High level
1191 |1|(% colspan="2" %)Low Level
1192 |Tens Place|(% colspan="2" %)DI2 terminal valid state setting(0~~1,as above)
1193 |Hundreds Place|(% colspan="2" %)DI3 terminal valid state setting(0~~1,as above)
1194 |Thousands Place|(% colspan="2" %)DI4 terminal valid state setting(0~~1,as above)
1195 |Ten Thousands Place|(% colspan="2" %)DI5 terminal valid state setting(0~~1,as above)
1196 |(% rowspan="8" %)**F5.38**|(% colspan="2" %)DI valid mode selection 2|Default|00000
1197 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI6 terminal valid state setting
1198 |0|(% colspan="2" %)High level
1199 |1|(% colspan="2" %)Low Level
1200 |Tens Place|(% colspan="2" %)Reserved
1201 |Hundreds Place|(% colspan="2" %)Reserved
1202 |Thousands Place|(% colspan="2" %)Reserved
1203 |Ten Thousands Place|(% colspan="2" %)Reserved
1204
1205 Define the effective state setting of the input terminal.
1206
1207 High level:The connection between DI terminal and COM is valid, while disconnection is invalid.
1208
1209 Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1210
1211 = F6 group output terminals =
1212
1213 The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1214
1215 (% class="table-bordered" %)
1216 |(% rowspan="3" %)**F6.00**|(% colspan="2" %)FM terminal output mode|Default|1
1217 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Pulse Output(FMP)(Reserved)  
1218 |1|(% colspan="2" %)Open-collector output(FMR)  
1219
1220 The FM terminal is a programmable multiplexing terminal. It can be used as an open collector output terminal (FMR). Refer to F6.01 for FMR function.
1221
1222 FMP function needs hardware support
1223
1224 (% class="table-bordered" %)
1225 |**F6.01**|FMR function|Default|0
1226 |**F6.02**|Relay 1 function|Default|2
1227 |**F6.03**|Relay 2 function|Default|1
1228 |**F6.06**|VDO Output Selection|Default|0
1229
1230 **The functions of the multi-function output terminals are as follows:**
1231
1232 (% class="table-bordered" %)
1233 |(% style="width:108px" %)**Set Value**|(% style="width:469px" %)**Function**|(% style="width:912px" %)**Description**
1234 |(% style="width:108px" %)0|(% style="width:469px" %)No output|(% style="width:912px" %)The output terminal has no function  
1235 |(% style="width:108px" %)1|(% style="width:469px" %)AC Drive running|(% style="width:912px" %)It means that the inverter is running and there is an output frequency (it can be zero) and the ON signal is output at this time.
1236 |(% style="width:108px" %)2|(% style="width:469px" %)Fault output(stop)|(% style="width:912px" %)When the inverter fails and it stops, it outputs ON signal.
1237 |(% style="width:108px" %)3|(% style="width:469px" %)Frequency level detection FDT1 output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.08 and F8.09.
1238 |(% style="width:108px" %)4|(% style="width:469px" %)Frequency reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.21
1239 |(% style="width:108px" %)5|(% style="width:469px" %)Zero-speed running(no output at stop)|(% style="width:912px" %)The inverter runs and the output frequency is 0, and the ON signal is output.
1240 |(% style="width:108px" %)6|(% style="width:469px" %)Motor overload pre-warning|(% style="width:912px" %)Before the motor electronic thermal protection acts, it is judged according to the overload forecast value, and the ON signal is output after the forecast value is exceeded. Motor overload parameters are set in FA.00~~FA.02.
1241 |(% style="width:108px" %)7|(% style="width:469px" %)AC Drive overload pre-warning|(% style="width:912px" %)After checking that the inverter is overloaded, advance 10s before the protection occurs. Output ON signal.
1242 |(% style="width:108px" %)8|(% style="width:469px" %)Set count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.08, the ON signal is output.
1243 |(% style="width:108px" %)9|(% style="width:469px" %)Designated count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.09, the ON signal is output. Refer to the function description of FB group for counting function
1244 |(% style="width:108px" %)10|(% style="width:469px" %)Length reached|(% style="width:912px" %)When the actual length detected exceeds the length set by FB.05, the ON signal is output.
1245 |(% style="width:108px" %)11|(% style="width:469px" %)PLC cycle complete|(% style="width:912px" %)When the simple PLC runs a cycle, it outputs a pulse signal with a width of 250ms.
1246 |(% style="width:108px" %)12|(% style="width:469px" %)Accumulative running time reached|(% style="width:912px" %)When the accumulative running time of the inverter exceeds the time set by F8.17, it outputs ON signal.
1247 |(% style="width:108px" %)13|(% style="width:469px" %)Frequency limited|(% style="width:912px" %)When the set frequency exceeds the upper and lower frequency limits and the inverter output frequency reaches the upper and lower frequency limits, the ON signal is output.
1248 |(% style="width:108px" %)14|(% style="width:469px" %)Torque limited|(% style="width:912px" %)When the torque limit function is activated, the stall protection function automatically activates, automatically changes the output frequency, and outputs an ON signal to indicate that the output torque is limited. This output signal can be used to reduce the load or display an overload status signal on the monitoring device.
1249 |(% style="width:108px" %)15|(% style="width:469px" %)Ready for running|(% style="width:912px" %)The power supply of the main circuit and control circuit is established, the protection function of the inverter does not operate, and the inverter outputs ON signal when it is in an operational state.
1250 |(% style="width:108px" %)16|(% style="width:469px" %)AI1 larger than AI2|(% style="width:912px" %)When the value of analog input AI1 is greater than the other input AI2, the ON signal is output.
1251 |(% style="width:108px" %)17|(% style="width:469px" %)Frequency upper limit reached|(% style="width:912px" %)When the operating frequency reaches the upper limit frequency, the ON signal is output.
1252 |(% style="width:108px" %)18|(% style="width:469px" %)Frequency lower limit reached|(% style="width:912px" %)When the operating frequency reaches the lower limit frequency, the ON signal is output.
1253 |(% style="width:108px" %)19|(% style="width:469px" %)Undervoltage state output|(% style="width:912px" %)When the inverter is under voltage, it outputs ON signal.
1254 |(% style="width:108px" %)20|(% style="width:469px" %)Communication setting|(% style="width:912px" %)See the relevant description in the communication protocol.
1255 |(% style="width:108px" %)21|(% style="width:469px" %)Positioning completed (Reserved)|(% style="width:912px" %)Reserved
1256 |(% style="width:108px" %)22|(% style="width:469px" %)Positioning close (Reserved)|(% style="width:912px" %)Reserved
1257 |(% style="width:108px" %)23|(% style="width:469px" %)Zero-speed running 2(having output at stop)|(% style="width:912px" %)When the output frequency of the inverter is 0, the ON signal is output (also output when stopping).
1258 |(% style="width:108px" %)24|(% style="width:469px" %)Accumulative power-on time reached|(% style="width:912px" %)When F7.13 (accumulated power-on time of the inverter) exceeds the time set by F8.16, the ON signal is output.
1259 |(% style="width:108px" %)25|(% style="width:469px" %)Frequency level detection FDT2|(% style="width:912px" %)Please refer to the detailed description of function codes F8.28 and F8.39.
1260 |(% style="width:108px" %)26|(% style="width:469px" %)Frequency 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.30 and F8.31.
1261 |(% style="width:108px" %)27|(% style="width:469px" %)Frequency 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.32 and F8.33.
1262 |(% style="width:108px" %)28|(% style="width:469px" %)Current 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.38 and F8.30.
1263 |(% style="width:108px" %)29|(% style="width:469px" %)Current 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.40 and F8.41.
1264 |(% style="width:108px" %)30|(% style="width:469px" %)Timing reached|(% style="width:912px" %)When F8.42 (timing function selection) is valid, the inverter will output ON signal when the current running time reaches the set timing time.
1265 |(% style="width:108px" %)31|(% style="width:469px" %)AI1 input limit exceeded|(% style="width:912px" %)When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.45 (AI1 input protection lower limit), FM (FMR) outputs ON signal.
1266 |(% style="width:108px" %)32|(% style="width:469px" %)Offload|(% style="width:912px" %)Output ON signal when the inverter is in the off-load state
1267 |(% style="width:108px" %)33|(% style="width:469px" %)Running direction|(% style="width:912px" %)Output ON signal when inverter is running in reverse
1268 |(% style="width:108px" %)34|(% style="width:469px" %)Zero current detection|(% style="width:912px" %)Please refer to the detailed description of function codes F8.34 and F8.35.
1269 |(% style="width:108px" %)35|(% style="width:469px" %)Module temperature reached|(% style="width:912px" %)When F7.07 (IGBT module heatsink temperature) reaches the value of F8.47 (module temperature reached), output ON signal
1270 |(% style="width:108px" %)36|(% style="width:469px" %)Software overcurrent output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.36 and F8.37.
1271 |(% style="width:108px" %)37|(% style="width:469px" %)Lower limit frequency reached (non-operational)|(% style="width:912px" %)When the running frequency reaches the lower limit frequency, the ON signal is output (also output when stopping).
1272 |(% style="width:108px" %)38|(% style="width:469px" %)Fault output (continue operation)|(% style="width:912px" %)When the inverter fails, output ON signal
1273 |(% style="width:108px" %)39|(% style="width:469px" %)Reserved|(% style="width:912px" %)
1274 |(% style="width:108px" %)40|(% style="width:469px" %)This running time arrive|(% style="width:912px" %)
1275 |(% style="width:108px" %)41|(% style="width:469px" %)User-defined output 1|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.28~~F6.32 for details.
1276 |(% style="width:108px" %)42|(% style="width:469px" %)User-defined output 2|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.23~~F6.37 for details.
1277 |(% style="width:108px" %)43|(% style="width:469px" %)(((
1278 Timer output
1279 )))|(% style="width:912px" %)(((
1280 If the timer arrives, the VFD outputs ON signal
1281 )))
1282 |(% style="width:108px" %)44|(% style="width:469px" %)(((
1283 Forward running status
1284 )))|(% style="width:912px" %)(((
1285 If the VFD is running forward, output ON signal
1286 )))
1287 |(% style="width:108px" %)45|(% style="width:469px" %)(((
1288 Reverse running status
1289 )))|(% style="width:912px" %)(((
1290 If the VFD is running reverse, output ON signal
1291 )))
1292
1293 (% class="table-bordered" %)
1294 |F6.11|FMP(Pulse output terminal)output selection(Reserved)|Default|0
1295 |F6.12|AO1 function|Default|0
1296 |F6.13|AO2 function|Default|1
1297
1298 The standard output of analog output (zero offset is 0, gain is 1) is 0mA~~20mA (or 0V~~10V), and the FMP output range is from 0Hz to the setting of function code F5.09.
1299
1300 The range of the corresponding amount expressed is shown in the following Sheet:
1301
1302 (% class="table-bordered" %)
1303 |**Set value**|**Function**|**Range**
1304 |0|Running frequency|0~~Maximum output power
1305 |1|Set frequency|0~~Maximum output frequency
1306 |2|Output current|0~~2 times motor rated current
1307 |3|Output torque|0~~2 times motor rated torque
1308 |4|Output power|0~~2 times motor rated power
1309 |5|Output voltage|0~~1.2 times AC drive rated voltage
1310 |6|PULSE input|0.01kHz~~100.00kHz
1311 |7|AI1|0V~~10V
1312 |8|AI2|0V~~10V/0~~20mA
1313 |10|Length|0~~Maximum set length
1314 |11|Count value|0~~Maximum count value
1315 |12|Communication setting|-10000~~10000
1316 |13|Motor Speed|0~~Rotation speed corresponding to maximum output frequency
1317 |14|Output Current|0-1000A,as 0-10V
1318 0-1000V,as 0-10V
1319 |15|Output Voltage|0.0V~~1000.0V
1320
1321 (% class="table-bordered" %)
1322 |(% rowspan="2" %)**F6.14**|FMP output maximum frequency|Default|50.00kHz   
1323 |Setting range|(% colspan="2" %)0.01kHz~~100.00kHz   
1324
1325 When the FM terminal is selected as pulse output, the maximum frequency value of the pulse can be output.
1326
1327 (% class="table-bordered" %)
1328 |(% rowspan="2" %)**F6.15**|AO1 offset coefficient|Default|0.0%   
1329 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1330 |(% rowspan="2" %)**F6.16**|AO1 gain|Default|1.00   
1331 |Setting range|(% colspan="2" %)-10.00~~10.00
1332 |(% rowspan="2" %)**F6.17**|AO2 offset coefficient|Default|0.00%   
1333 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1334 |(% rowspan="2" %)**F6.18**|AO2 gain|Default|1.00   
1335 |Setting range|(% colspan="2" %)-10.00~~10.00
1336
1337 If the zero offset is represented by "b", the gain is represented by k, the actual output is represented by Y, and the standard output is represented by X, the actual output is Y=kX+b; AO1, A02 zero offset coefficient 100% corresponds to 10V (20mA). Standard output refers to the output 0V~~10V (20mA) corresponding to the analog output representing 0~~max. Generally used to correct the zero drift of analog output and the deviation of output amplitude. It can also be customized to any desired output curve: For example: if the analog output content is the operating frequency, and hope to output 8V (16mA) when the frequency is 0, and 3V (6mA) when the frequency is the maximum frequency, the gain should be set to " .0.50", the zero offset should be set to "80%".
1338
1339 (% class="table-bordered" %)
1340 |(% rowspan="2" %)**F6.19**|FMR connecting delay time|Default|0.0s
1341 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1342 |(% rowspan="2" %)**F6.20**|RELAY1 connecting delay time|Default|0.0s
1343 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1344 |(% rowspan="2" %)**F6.21**|RELAY2 connecting delay time|Default|0.0s
1345 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1346 |(% rowspan="2" %)**F6.22**|VDO connecting delay time|Default|0.0s
1347 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1348 |(% rowspan="2" %)**F6.23**|FMR disconnecting delay time|Default|0.0s
1349 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1350 |(% rowspan="2" %)**F6.24**|RELAY1 disconnecting delay time|Default|0.0s
1351 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1352 |(% rowspan="2" %)**F6.25**|RELAY2 disconnecting delay time|Default|0.0s
1353 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1354 |(% rowspan="2" %)**F6.26**|VDO disconnecting delay time|Default|0.0s
1355 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1356
1357 Set the delay time from the state change of the output terminal FMR, relay 1, relay 2, VDO to the output change.
1358
1359 (% class="table-bordered" %)
1360 |(% rowspan="8" %)**F6.27**|(% colspan="2" %)Output terminal valid state selection|Default|00000
1361 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)FMR valid state selection
1362 |0|(% colspan="2" %)Positive Logic
1363 |1|(% colspan="2" %)Negative Logic
1364 |Tens Place|(% colspan="2" %)RELAY1 valid state selection(0~~1,as above)
1365 |Hundreds Place|(% colspan="2" %)RELAY2 valid state selection(0~~1,as above)
1366 |Thousands Place|(% colspan="2" %)Reserved
1367 |Ten Thousands Place|(% colspan="2" %)Reserved
1368
1369 Define the positive and negative logic of output terminal FMR, relay 1, and relay 2.
1370
1371 Positive logic: the digital output terminal is valid when connected to the corresponding common terminal, but invalid when disconnected;
1372
1373 Inverse logic: the connection between the digital output terminal and the corresponding common terminal is invalid, and the disconnection is valid;
1374
1375 (% class="table-bordered" %)
1376 |(% rowspan="2" %)**F6.28**|(((
1377 User defined output
1378
1379 variability selection (EX)1
1380 )))|Default|00
1381 |Setting range|(% colspan="2" %)0~~49
1382
1383 This parameter is used to select the reference variable for custom output. Use the selected variable EX as the comparison object
1384
1385 (% class="table-bordered" %)
1386 |(% rowspan="2" %)**F6.29**|User defined comparison method 1|Default|00
1387 |Setting range|(% colspan="2" %)0~~14
1388
1389 The ones place selection comparison test mode, the variable selected by F6.28 is used as the comparison test object, and the comparison and test values are set by F6.31~~F6.32.
1390
1391 Tens place selects the output mode. False value output means output if the condition is not met, and no output if the condition is met; true value output means output if the condition is met, and no output if the condition is not met.
1392
1393 (% class="table-bordered" %)
1394 |(% rowspan="2" %)**F6.30**|User defined output dead zone 1|Default|0
1395 |Setting range|(% colspan="2" %)0~~65535
1396
1397 When the comparison test mode of F6.29 is set to be greater than or equal to or less than or equal to, F6.30 is used to define the processing dead zone value centered on the comparison value X1, and the processing dead zone is only for 1 and 2 of the F6.29 comparison test mode It has an effect, but no effect on 0, 3, and 4. For example, when F6.29 is set to 11, when EX increases from 0 upwards, the output is valid after increasing to greater than or equal to X1+F6.30; when EX decreases downward, after decreasing to less than or equal to X1.F6.30, The output is invalid.
1398
1399 (% class="table-bordered" %)
1400 |(% rowspan="2" %)**F6.31**|(((
1401 User-defined 1 output
1402
1403 comparison value X1
1404 )))|Default|0
1405 |Setting range|(% colspan="2" %)0~~65535
1406 |(% rowspan="2" %)**F6.32**|(((
1407 User-defined 1 output
1408
1409 comparison value X2
1410 )))|Default|0
1411 |Setting range|(% colspan="2" %)0~~65535
1412
1413 These two parameters are used to set the comparison value of the custom output.
1414
1415 The following is an example of using custom output:
1416
1417 When the set frequency is greater than or equal to 20.00HZ, the relay is closed;
1418
1419 The setting parameters are as follows: F6.02 = 41, F6.28 = 1, F6.29 = 11, F6.30 = 0, F6.31 = 2000;
1420
1421 2. The relay is required to close when the bus voltage is less than or equal to 500.0V; in order to avoid frequent relay actions when the detection voltage is 5.0V up and down from 500.0V, it is required to be treated as a dead zone in the range of (500.0-5.0) ~~ (500.0+5.0) .
1422
1423 The setting parameters are as follows: F6.02 = 41, F6.28 = 2, F6.29 = 01, F6.30 = 50, F6.31 = 5000;
1424
1425 When the inverter is required to reverse, the relay is closed:
1426
1427 The setting parameters are as follows: F6.02 = 41, F6.28 = 5, F6.29 = 14, F6.31 = 8, F6.32 = 8;
1428
1429 When AI1 input is required to be greater than 3.00V and less than or equal to 6.00V, the relay is closed:
1430
1431 The setting parameters are as follows: F6.02 = 41, F6.28 = 13, F6.29 = 13, F6.31 = 300, F6.32 = 600;
1432
1433 (% class="table-bordered" %)
1434 |(% rowspan="2" %)**F6.33**|(((
1435 User defined output
1436
1437 variability selection (EX)2
1438 )))|Default|00
1439 |Setting range|(% colspan="2" %)0~~49
1440
1441 (% class="table-bordered" %)
1442 |(% rowspan="2" %)**F6.34**|User defined comparison method 2|Default|00
1443 |Setting range|(% colspan="2" %)0~~14
1444
1445 (% class="table-bordered" %)
1446 |(% rowspan="2" %)**F6.35**|User defined output dead zone 1|Default|0
1447 |Setting range|(% colspan="2" %)0~~65535
1448
1449 (% class="table-bordered" %)
1450 |(% rowspan="2" %)**F6.36**|(((
1451 User-defined 2 output
1452
1453 comparison value X1
1454 )))|Default|0
1455 |Setting range|(% colspan="2" %)0~~65535
1456 |(% rowspan="2" %)**F6.37**|(((
1457 User-defined 2output
1458
1459 comparison value X2
1460 )))|Default|0
1461 |Setting range|(% colspan="2" %)0~~65535
1462
1463 For the second output, the parameter setting method is the same as F6.28~~F6.32.
1464
1465 (% class="table-bordered" %)
1466 |(% rowspan="2" %)**F6.38**|The setting time of timer|Default|0
1467 |Setting range|(% colspan="3" %)0.00s~~100.0s
1468
1469 Set the timer setting time
1470
1471 = F7 group keypad display =
1472
1473 (% class="table-bordered" %)
1474 |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1475 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
1476 |1|(% colspan="2" %)Upload local functional parameters to LCD keypad
1477 |2|(% colspan="2" %)Download functional parameters from LCD keypad to AC drive
1478
1479 Note: This function only supports LCD keyboard
1480
1481 (% class="table-bordered" %)
1482 |(% rowspan="7" %)**F7.01**|(% colspan="2" %)MF.K key function selection|Default|0
1483 |(% rowspan="6" %)Setting range|0|(% colspan="2" %)MF.K disabled
1484 |1|(% colspan="2" %)Switchover between keypad control and remote command control(terminal or communication)
1485 |2|(% colspan="2" %)Switchover between forward rotation and reverse rotation
1486 |3|(% colspan="2" %)Forward JOG
1487 |4|(% colspan="2" %)Reverse JOG
1488 |5|(% colspan="2" %)Menu mode switching
1489
1490 The MF.K key is the multi-function key. The function of the keyboard MF.K key can be defined through parameter settings. This key can be used to switch during stop and running.
1491
1492 0: When set to 0, this key has no function.
1493
1494 1: Switchover between keypad control and remote command control(terminal or communication). Refers to the switch of the command source, from the current command source to keyboard control (local operation). If the current command source is keyboard control, this command has no effect.
1495
1496 2: Switchover between forward rotation and reverse rotation
1497
1498 Switch the direction of the frequency command through the keyboard MF.K key. It is valid only in the operation panel command channel.
1499
1500 3: Forward jog
1501
1502 Realize forward jog (FJOG) by keyboard MF.K key.
1503
1504 4: Reverse jog
1505
1506 Reverse jog (RJOG) can be realized by keyboard MF.K key.
1507
1508 5: Menu mode switching
1509
1510 The menu mode switch is realized through the keyboard MF.K key.
1511
1512 (% class="table-bordered" %)
1513 |(% rowspan="3" %)**F7.02**|(% colspan="4" %)STOP/RESET key function|(% colspan="2" %)Default|(% colspan="2" %)1
1514 |(% colspan="3" rowspan="2" %)Setting range|0|(% colspan="4" %)STOP/RESET key enabled only in keypad control
1515 |1|(% colspan="4" %)STOP/RESET key enabled in any operation mode
1516 |(% rowspan="2" %)**F7.03**|(% colspan="5" %)LED display parameters 1 while running|(% colspan="2" %)Default|17
1517 |Setting range|(((
1518 0000
1519
1520 ~~FFFF
1521 )))|(% colspan="6" %)(((
1522 Bit00: Running frequency (Hz)
1523
1524 Bit01: Set frequency (Hz)
1525
1526 Bit02: DC bus voltage (V)
1527
1528 Bit03: Output voltage (V)
1529
1530 Bit04: Output current (A)
1531
1532 Bit05: Output power (kW)
1533
1534 Bit06: Output torque ~(%)
1535
1536 Bit07: DI input status
1537
1538 Bit08: DO output status
1539
1540 Bit09: AI1 power (V)
1541
1542 Bit10: AI2 power (V)
1543
1544 Bit11: Reserved
1545
1546 Bit12: Count value
1547
1548 Bit13: Length value
1549
1550 Bit14: Load speed display
1551
1552 Bit15: PID set value
1553
1554 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.03.
1555 )))
1556 |(% rowspan="2" %)**F7.04**|(% colspan="5" %)LED display parameters 2 while running|(% colspan="2" %)Default|0
1557 |Setting range|(((
1558 0000
1559
1560 ~~FFFF
1561 )))|(% colspan="6" %)(((
1562 Bit00: PID feedback
1563
1564 Bit01: PLC stage
1565
1566 Bit02: Feedback speed (0.1Hz)
1567
1568 Bit03: Reserved
1569
1570 Bit04: Remaining running time
1571
1572 Bit05: AI1 voltage before correction
1573
1574 Bit06: AI2 voltage before correction
1575
1576 Bit07: Reserved
1577
1578 Bit08: Linear speed
1579
1580 Bit09: Current power-on time
1581
1582 Bit10: Current running time
1583
1584 Bit11: Reserved
1585
1586 Bit12: Communication setting
1587
1588 Bit13: Reserved
1589
1590 Bit14: Main frequency X display
1591
1592 Bit15: Auxiliary frequency Y display
1593
1594 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.04
1595 )))
1596
1597 The running display parameters are used to set the status parameters that can be viewed when the inverter is running. Up to 32 state parameters can be viewed. Select the state parameters to be displayed according to the digits of the parameter values of F7.03 and F7.04, and the display sequence starts from the lowest bit of F7.03.
1598
1599 (% class="table-bordered" %)
1600 |(% rowspan="2" %)**F7.05**|(% colspan="5" %)LED display parameters while stopping|(% colspan="2" %)Default|33
1601 |(% colspan="2" %)Setting range|(((
1602 0000
1603
1604 ~~FFFF
1605 )))|(% colspan="5" %)(((
1606 Bit00: Set frequency (Hz)
1607 Bit01: DC bus voltage(V)
1608 Bit02: DI input status
1609 Bit03: DO output status
1610 Bit04: AI1 voltage (V)
1611 Bit05: AI2 voltage (V)
1612 Bit06: Reserved
1613 Bit07: Count value
1614 Bit08: Length value
1615 Bit09: PLC stage
1616 Bit10: Load speed display
1617 Bit11: PID set value
1618 Bit12: Reserved
1619
1620 Bit13: PID feedback value
1621
1622 If you need to display the above parameters while stopping, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.05
1623 )))
1624 |(% colspan="2" rowspan="2" %)**F7.06**|(% colspan="3" %)Load speed display coefficien|(% colspan="2" %)Default|(% colspan="2" %)1.0000
1625 |(% colspan="3" %)Setting range|(% colspan="4" %)0.0001~~6.5000
1626
1627 Correspond the output frequency of the inverter to the load speed through this parameter. Set when you need to display the load speed.
1628
1629 The specific calculation method is described in F7.12.
1630
1631 (% class="table-bordered" %)
1632 |(% rowspan="2" %)**F7.07**|Heatsink temperature of IGBT|Default|0
1633 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1634
1635 Displays the temperature of the IGBT module. The over-temperature protection value of IGBT module of different models may be different.
1636
1637 (% class="table-bordered" %)
1638 |(% rowspan="2" %)**F7.08**|Heatsink temperature of rectifier bridge|Default|0
1639 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1640
1641 Displays the temperature of the rectifier bridge. The over-temperature protection value of rectifier bridge of different models may be different.
1642
1643 (% class="table-bordered" %)
1644 |(% rowspan="2" %)**F7.09**|Accumulative running time|Default|0h
1645 |Setting range|(% colspan="2" %)0h~~65535h
1646
1647 Display the cumulative running time of the inverter so far. When this time reaches the set running time (F8.17), the multi-function digital output (12) of the inverter will act.
1648
1649 (% class="table-bordered" %)
1650 |(% rowspan="2" %)**F7.10**|(% colspan="2" %)Product Number|Default|-
1651 |(% colspan="2" %)Setting range|(% colspan="2" %)Product Number of AC Drive
1652 |(% rowspan="2" %)**F7.11**|(% colspan="2" %)Software Version|Default|
1653 |(% colspan="2" %)Setting range|(% colspan="2" %)Software Version of Control Board
1654 |(% rowspan="5" %)**F7.12**|(% colspan="2" %)Number of decimal places for load speed display|Default|0
1655 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)0 decimal places
1656 |1|(% colspan="2" %)1 decimal places
1657 |2|(% colspan="2" %)2 decimal places
1658 |3|(% colspan="2" %)3 decimal places
1659
1660 The load speed calculation method is: if the load speed display coefficient is 2.000, the load speed decimal point position is 2: 2 decimal points.
1661
1662 When the inverter is running: if the running frequency is 40.00 Hz, 4000*2.000 = 8000, and 2 decimal points display, the load speed is 80.00.
1663
1664 When the inverter is stopped: If the set frequency is 50.00 Hz, 5000*2.000 = 10000, and the load speed is 100.00 when displayed with 2 decimal points.
1665
1666 (% class="table-bordered" %)
1667 |(% rowspan="2" %)**F7.13**|Accumulative power-on time|Default|0h
1668 |Setting range|(% colspan="2" %)0h~~65535h
1669
1670 Display the cumulative power-on time of the inverter so far. When this time reaches the set power-on time (F8.17), the inverter's multi-function digital output (24) will act.
1671
1672 (% class="table-bordered" %)
1673 |(% rowspan="2" %)**F7.14**|Accumulative power consumption|Default|0
1674 |Setting range|(% colspan="2" %)0~~65535
1675
1676 Displays the cumulative power consumption of the inverter so far.
1677
1678 (% class="table-bordered" %)
1679 |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1680 |Setting range|(% colspan="2" %)-
1681
1682 = F8 group auxiliary functions =
1683
1684 (% class="table-bordered" %)
1685 |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
1686 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1687 |(% rowspan="2" %)**F8.01**|JOG acceleration time|Default|20.0s
1688 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1689 |(% rowspan="2" %)**F8.02**|JOG deceleration time|Default|20.0s  
1690 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1691
1692 Define the given frequency and acceleration/deceleration time of the inverter during jog. The jog process starts and stops according to start mode 0 (F1.00, direct start) and stop mode 0 (F1.10, decelerate to stop).
1693
1694 Jog acceleration time refers to the time required for the inverter to accelerate from 0Hz to the maximum output frequency (F0.10).
1695
1696 Jog deceleration time refers to the time required for the inverter to decelerate from the maximum output frequency (F0.10) to 0Hz.
1697
1698 (% class="table-bordered" %)
1699 |(% rowspan="2" %)**F8.03**|Acceleration time2|Default|Model dependent
1700 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1701 |(% rowspan="2" %)**F8.04**|Deceleration time2|Default|Model dependent
1702 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1703 |(% rowspan="2" %)**F8.05**|Acceleration time3|Default|Model dependent
1704 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1705 |(% rowspan="2" %)**F8.06**|Deceleration time3|Default|Model dependent
1706 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1707 |(% rowspan="2" %)**F8.07**|Acceleration time4|Default|Model dependent
1708 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1709 |(% rowspan="2" %)**F8.08**|Deceleration time4|Default|Model dependent
1710 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1711
1712 The acceleration and deceleration time can be selected from F0.18 and F0.19 and the above three types of acceleration and deceleration time. The meanings are the same, please refer to the relevant description of F0.18 and F0.19. The acceleration and deceleration time 1~~4 during the operation of the inverter can be selected through different combinations of the multifunctional digital input terminal DI. Please refer to the function codes F5.01~~F5.05.
1713
1714 (% class="table-bordered" %)
1715 |(% rowspan="2" %)**F8.09**|Jump frequency 1|Default|0.00Hz
1716 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1717 |(% rowspan="2" %)**F8.10**|Jump frequency 2|Default|0.00Hz
1718 |Setting range|(% colspan="2" %)0.00 Hz~~F0.10
1719 |(% rowspan="2" %)**F8.11**|Frequency jump amplitude|Default|0.01Hz
1720 |Setting range|(% colspan="2" %)0.00~~F0.10
1721
1722 When the set frequency is within the jump frequency range, the actual running frequency will run at the jump frequency boundary close to the set frequency. By setting the jump frequency, the inverter can avoid the mechanical resonance point of the load. This inverter can set two jumping frequency points. If both skip frequencies are set to 0, this function will not work.
1723
1724 (% style="text-align:center" %)
1725 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49731ff18de325.png]]
1726
1727 Figure 6-9-1 Schematic diagram of hopping frequency
1728
1729 (% class="table-bordered" %)
1730 |(% rowspan="2" %)**F8.12**|Forward/Reverse rotation dead-zone time|Default|0.0s
1731 |Setting range|(% colspan="2" %)0.00s~~3000.0s
1732
1733 Set the transition time at the output zero frequency during the forward and reverse transition of the inverter, as shown in the figure below:
1734
1735 (((
1736 (% style="text-align:center" %)
1737 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d8f000d30762f35.png]]
1738 )))
1739
1740 Figure 6-9-2 Schematic diagram of forward and reverse dead zone time
1741
1742 (% class="table-bordered" %)
1743 |(% rowspan="3" %)**F8.13**|(% colspan="2" %)Reverse control|Default|0
1744 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Enabled
1745 |1|(% colspan="2" %)Disabled
1746
1747 When this parameter is 0: it can be reverse controlled by keyboard, terminal or communication.
1748
1749 When this parameter is 1: the reverse control function is valid regardless of the command source selection, that is, the reverse control function is invalid under keyboard, terminal, and communication control.
1750
1751 (% class="table-bordered" %)
1752 |(% rowspan="3" %)**F8.14**|(% colspan="2" %)The carrier frequency is adjusted with temperature|Default|1
1753 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)No
1754 |1|(% colspan="2" %)Yes
1755
1756 Provide fixed and random PWM carrier frequency adjustment methods. Random PWM motor noise has a wide frequency domain, and fixed PWM motor noise frequency is fixed.
1757
1758 The carrier frequency temperature adjustment is effective, which means that the inverter can automatically adjust the carrier frequency according to its own temperature. Selecting this function can reduce the chance of inverter overheating alarm.
1759
1760 (% class="table-bordered" %)
1761 |(% rowspan="2" %)**F8.15**|Droop control|Default|0.00Hz
1762 |Setting range|(% colspan="2" %)0.00Hz~~10.00Hz
1763
1764 When multiple inverters drive the same load, the load distribution is unbalanced due to different speeds, which makes the inverter with higher speed bear heavier load. The droop control characteristic is that the speed droops as the load increases, which can make the load balanced.
1765
1766 This parameter adjusts the frequency change of the inverter with drooping speed.
1767
1768 (% class="table-bordered" %)
1769 |(% rowspan="2" %)**F8.16**|Setting of accumulated power-on arrive time|Default|0h
1770 |Setting range|(% colspan="2" %)0h~~65000h
1771
1772 Preset the power-on time of the inverter. When the accumulated power-on time (F7.13) reaches this set power-on time, the inverter's multi-function digital DO outputs a running time arrival signal.
1773
1774 (% class="table-bordered" %)
1775 |(% rowspan="2" %)**F8.17**|Setting of accumulated running arrive time|Default|0h
1776 |Setting range|(% colspan="2" %)0h~~65000h
1777
1778 Pre-set the running time of the inverter. When the accumulated running time (F7.09) reaches this set running time, the inverter's multi-function digital DO outputs a running time arrival signal.
1779
1780 (% class="table-bordered" %)
1781 |(% rowspan="3" %)**F8.18**|(% colspan="2" %)Startup protection|Default|0
1782 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
1783 |1|(% colspan="2" %)Valid
1784
1785 This function code is used to improve the safety protection coefficient. If it is set to 1, it has two effects: one is that if the running command exists when the inverter is powered on, the running command must be removed to eliminate the running protection status. The second is that if the running command still exists when the inverter fault is reset, the running command must be removed first to eliminate the running protection state. This can prevent the motor from running automatically without knowing it, causing danger.
1786
1787 (% class="table-bordered" %)
1788 |(% rowspan="2" %)**F8.19**|Frequency detection value (FDT1)|Default|50.00Hz
1789 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1790 |(% rowspan="2" %)**F8.20**|Frequency detection hysteresis (FDT1)|Default|5.0%
1791 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT1)
1792
1793 Set the detection value of the output frequency and the hysteresis value of the output operation release.
1794
1795 (% style="text-align:center" %)
1796 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a185f8b9d5aa6fa7.png]]
1797
1798 Figure 6-9-3 FDT1 level diagram
1799
1800 (% class="table-bordered" %)
1801 |(% rowspan="2" %)**F8.21**|Detection amplitude of frequency reached|Default|0.0%
1802 |Setting range|(% colspan="2" %)0.00~~100%*F0.10
1803
1804 When the output frequency of the inverter reaches the set frequency value, this function can adjust its detection amplitude. As shown below:
1805
1806 (((
1807 (% style="text-align:center" %)
1808 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_5226db5d1f9834fd.png]]
1809 )))
1810
1811 Figure 6-9-4 Schematic diagram of frequency arrival detection amplitude
1812
1813 (% class="table-bordered" %)
1814 |(% rowspan="2" %)**F8.22**|(% colspan="2" %)Jump frequency during acceleration/deceleration|Default|0
1815 |Setting range|(% colspan="3" %)(((
1816 0:Disabled
1817
1818 1:Enabled
1819 )))
1820
1821 This function code is set to be valid. When the running frequency is within the jump frequency range, the actual running frequency will directly skip the set jump frequency boundary.
1822
1823 (% style="text-align:center" %)
1824 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_43540e37b92098da.png]]
1825
1826 Figure 6-9-5 Schematic diagram of effective jumping frequency during acceleration and deceleration
1827
1828 (% class="table-bordered" %)
1829 |(% rowspan="2" %)**F8.23**|(% colspan="2" %)Accumulated running time arrive selection|Default|0
1830 |Setting range|(% colspan="3" %)0:Keep running
1831 1:Fault warning
1832 |(% rowspan="2" %)**F8.24**|(% colspan="2" %)Accumulated power-on time arrive action selection|Default|0
1833 |Setting range|(% colspan="3" %)0:Keep running
1834 1:Fault warning
1835
1836 Set to 1: When the fault prompts, if the running time or power-on time arrives, according to the FA group fault protection action selection, the inverter will stop freely, decelerate to stop or continue to run (please refer to the function code FA.13~~FA.16 for detailed description).
1837
1838 (% class="table-bordered" %)
1839 |(% rowspan="2" %)**F8.25**|Acceleration time 1/2 switching frequency point|Default|0.00Hz
1840 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1841 |(% rowspan="2" %)**F8.26**|Deceleration time 1/2 switching frequency point|Default|0.00Hz
1842 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1843
1844 (% style="text-align:center" %)
1845 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_2b2ceaa98c745458.png]]
1846
1847 Figure 6-9-6 Schematic diagram of acceleration and deceleration time switching
1848
1849 ~1. Switchover selection during acceleration time
1850
1851 During acceleration, if the running frequency is less than F8.25 (acceleration time 1/2 switching frequency point), acceleration time 2 is selected, otherwise, acceleration time 1 is selected.
1852
1853 2. Switchover selection during deceleration time
1854
1855 During deceleration, if the running frequency is less than F8.26 (deceleration time 1/2 switching frequency point), deceleration time 2 is selected, otherwise, deceleration time 1 is selected.
1856
1857 (% class="table-bordered" %)
1858 |(% rowspan="2" %)**F8.27**|Terminal JOG preferred|Default|1
1859 |Setting range|(% colspan="2" %)(((
1860 0:Disabled
1861
1862 1:Enabled
1863 )))
1864
1865 This parameter is used to set the priority of terminal jog. When this parameter is set to be valid, once DI terminal receives the jog control command, the inverter will switch from other running states to terminal jog running state.
1866
1867 (% class="table-bordered" %)
1868 |(% rowspan="2" %)**F8.28**|Frequency detection value (FDT2)|Default|50.00Hz
1869 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1870 |(% rowspan="2" %)**F8.29**|Frequency detection hysteresis (FDT2)|Default|5.0%
1871 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT2)
1872
1873 The function of FDT2 is similar to the setting method of FDT1 (F8.19, F8.20).
1874
1875 (% style="text-align:center" %)
1876 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49acf9634cd985.png]]
1877
1878 Figure 6-9-7 FDT2 level diagram
1879
1880 (% class="table-bordered" %)
1881 |(% rowspan="2" %)**F8.30**|Arbitrary frequency reaching detection value 1|Default|50.00Hz
1882 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1883 |(% rowspan="2" %)**F8.31**|Arbitrary frequency reaching detection amplitude 1|Default|0.0%
1884 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1885 |(% rowspan="2" %)**F8.32**|Arbitrary frequency reaching detection value 2|Default|50.00Hz
1886 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1887 |(% rowspan="2" %)**F8.33**|Arbitrary frequency reaching detection amplitude 2|Default|0.0%
1888 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1889
1890 When the output frequency of the inverter is within the positive or negative detection range of the arbitrary arrival frequency detection value 1, 2, output pulse signal. As shown below:
1891
1892
1893 (((
1894 (% style="text-align:center" %)
1895 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3aef8d5790f3423f.png]]
1896 )))
1897
1898 Figure 6-9-8 Schematic diagram of arbitrary reaching frequency detection
1899
1900 (% class="table-bordered" %)
1901 |(% rowspan="2" %)**F8.34**|Zero current detection level|Default|5.0%
1902 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1903 |(% rowspan="2" %)**F8.35**|Zero current detection delay time|Default|0.10s
1904 |Setting range|(% colspan="2" %)0.00s~~600.00s
1905
1906 When the output current of the inverter is less than or equal to the zero current detection level and the duration exceeds the zero current detection delay time, a pulse signal is output. As shown below:
1907
1908 (% style="text-align:center" %)
1909 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_c93b84a4c5da944b.png]]
1910
1911 Figure 6-9-9 Schematic diagram of zero current detection
1912
1913 (% class="table-bordered" %)
1914 |(% rowspan="2" %)**F8.36**|Software overcurrent point|Default|200.0%
1915 |Setting range|(% colspan="2" %)0.0%(Invalid) ; 0.1%~~300.0%(Motor rated current)
1916 |(% rowspan="2" %)**F8.37**|Software overcurrent detection delay time|Default|0.00s
1917 |Setting range|(% colspan="2" %)0.00s~~600.00s
1918
1919 (((
1920 When the output current of the inverter is greater than or equal to the software overcurrent point and the duration exceeds the software overcurrent point detection delay time, a pulse signal is output. As shown below:
1921 )))
1922
1923 (% style="text-align:center" %)
1924 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_879549a41172d673.png]]
1925
1926 Figure 6-9-10 Schematic diagram of software overcurrent point detection
1927
1928 (% class="table-bordered" %)
1929 |(% rowspan="2" %)**F8.38**|Arbitrary reaching current 1|Default|100.0%
1930 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1931 |(% rowspan="2" %)**F8.39**|Arbitrary reaching current amplitude 1|Default|0.0%
1932 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1933 |(% rowspan="2" %)**F8.40**|Arbitrary reaching current 2|Default|100.0%
1934 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1935 |(% rowspan="2" %)**F8.41**|Arbitrary reaching current amplitude 2|Default|0.0%
1936 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1937
1938 When the output current of the inverter is within the detection amplitude of the positive and negative currents 1 and 2, it outputs a pulse signal. As shown below:
1939
1940 (% style="text-align:center" %)
1941 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9c74ba626be55d06.png]]
1942
1943 Figure 6-9-11 Schematic diagram of arbitrary reaching frequency detection
1944
1945 (% class="table-bordered" %)
1946 |(% rowspan="3" %)**F8.42**|(% colspan="2" %)Timing function|Default|0
1947 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1948 |1|(% colspan="2" %)Enabled
1949 |(% rowspan="5" %)**F8.43**|(% colspan="2" %)Timing duration source|Default|0
1950 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)F8.44 setting
1951 |1|(% colspan="2" %)AI1
1952 |2|(% colspan="2" %)AI2
1953 |3|(% colspan="2" %)Reserved
1954 |(% rowspan="2" %)**F8.44**|(% colspan="2" %)Timing duration|Default|0.0Min
1955 |Setting range|(% colspan="3" %)0.0Min~~6500.0Min
1956
1957 This function is used to complete the timing operation of the inverter. When the F8.42 timing function selection is valid, the inverter is running timing. When the set timing running time is reached, the inverter stops and outputs pulse signals. The timer will be cleared next time it runs. The timing remaining running time can be viewed through D0.20.
1958
1959 The set timing running time is determined by F8.43 and F8.44.
1960
1961 (% class="table-bordered" %)
1962 |(% rowspan="2" %)**F8.45**|(% colspan="2" %)AI1 input voltage lower limit|Default|3.10V
1963 |Setting range|(% colspan="3" %)0.00V~~F8.46
1964 |(% rowspan="2" %)**F8.46**|(% colspan="2" %)AI1 input voltage upper limit|Default|6.80V
1965 |Setting range|(% colspan="3" %)F8.45~~10.00V
1966
1967 When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.47 (AI1 input protection lower limit), FM (FMR) outputs a pulse signal.
1968
1969 (% class="table-bordered" %)
1970 |(% rowspan="2" %)**F8.47**|(% colspan="2" %)IGBT temperature threshold|Default|75℃
1971 |Setting range|(% colspan="3" %)0.00V~~F8.46
1972
1973 When F7.07 (IGBT module radiator temperature) reaches this value, output pulse signal
1974
1975 (% class="table-bordered" %)
1976 |(% rowspan="3" %)**F8.48**|(% colspan="2" %)Fast current limiting|Default|1
1977 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1978 |1|(% colspan="2" %)Enabled
1979
1980 Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1981
1982 = F9 group pid function of process control =
1983
1984 PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1985
1986 (% style="text-align:center" %)
1987 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1988
1989 (% style="text-align:center" %)
1990 [[image:生产流程图.png]]
1991
1992 Figure 6-10-1 Block diagram of process PID principle
1993
1994 (% class="table-bordered" %)
1995 |(% rowspan="8" %)**F9.00**|(% colspan="3" %)PID setting source|Default|0
1996 |(% rowspan="7" %)PID setting source|0|(% colspan="3" %)F9.01
1997 |1|(% colspan="3" %)AI1
1998 |2|(% colspan="3" %)AI2
1999 |3|(% colspan="3" %)Reserved
2000 |4|(% colspan="3" %)(((
2001 Reserved
2002 )))
2003 |5|(% colspan="3" %)Communication setting
2004 |6|(% colspan="3" %)Multi-speed instructions
2005
2006 When the frequency source selects PID, that is, if F0.03 or F0.04 is selected as 8, this group of functions will work. (Please refer to function code F0.03-F0.04). This parameter determines the target quantity given channel of the process PID. The set target value of the process PID is a relative value, and the set 100% corresponds to 100% of the feedback signal of the controlled system; the PID range (F9.04) is not necessary, because no matter how much the range is set, the system will It is calculated by relative value (0~~100%). However, if the PID range is set, the actual value of the signal corresponding to the PID setting and feedback can be visually observed through the keyboard display parameters.
2007
2008 (% class="table-bordered" %)
2009 |(% rowspan="2" %)**F9.01**|(% colspan="2" %)PID digital setting|Default|50.0%
2010 |Setting range|(% colspan="3" %)0.0%~~100.0%
2011
2012 When F9.00=0 is selected, the target source is keyboard setting. This parameter needs to be set. The reference value of this parameter is the feedback amount of the system.
2013
2014 (% class="table-bordered" %)
2015 |(% rowspan="10" %)**F9.02**|(% colspan="2" %)PID feedback source|Default|0
2016 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)AI1
2017 |1|(% colspan="2" %)AI2
2018 |2|(% colspan="2" %)Reserved
2019 |3|(% colspan="2" %)AI1-AI2
2020 |4|(% colspan="2" %)PULSE setting(DI6)
2021 |5|(% colspan="2" %)Communication setting
2022 |6|(% colspan="2" %)AI1+AI2
2023 |7|(% colspan="2" %)MAX(~|AI1~|,~|AI2~|)
2024 |8|(% colspan="2" %)MIN (~|AI1~|,~|AI2~|)
2025
2026 Use this parameter to select the PID feedback channel.
2027
2028 (% class="table-bordered" %)
2029 |(% rowspan="3" %)**F9.03**|(% colspan="2" %)PID controlling direction|Default|0
2030 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Positive
2031 |1|(% colspan="2" %)Negative
2032
2033 Positive effect: When the feedback signal is less than the PID setting, the inverter output frequency is required to increase in order to make the PID balance. Such as the tension PID control of winding.
2034
2035 Reverse effect: When the feedback signal is greater than the PID setting, the output frequency of the inverter is required to decrease in order to balance the PID. Such as unwinding tension PID control.
2036
2037 The effect of this function is affected by terminal function 35: PID direction.
2038
2039 (% class="table-bordered" %)
2040 |(% rowspan="2" %)**F9.04**|(% colspan="2" %)PID setting feedback range|Default|1000
2041 |Setting range|0~~65535|(% colspan="2" %)PID given feedback range is a dimensionless unit. Used as the display of PID given and feedback.
2042 |(% rowspan="2" %)**F9.05**|(% colspan="2" %)Proportional gain P1|Default|20.0
2043 |Setting range|(% colspan="3" %)0.0~~100.0
2044 |(% rowspan="2" %)**F9.06**|(% colspan="2" %)Integral time I1|Default|2.00s
2045 |Setting range|(% colspan="3" %)0.01s~~10.00s
2046 |(% rowspan="2" %)**F9.07**|(% colspan="2" %)Differential time D1|Default|0.000s
2047 |Setting range|(% colspan="3" %)0.00~~10.000
2048
2049 Proportional gain P: determines the adjustment intensity of the entire PID regulator, the greater the P, the greater the adjustment intensity. The parameter of 100 means that when the deviation between the PID feedback amount and the given amount is 100%, the adjustment range of the PID regulator to the output frequency command is the maximum frequency (ignoring the integral effect and the derivative effect).
2050
2051 Integral time I: Decide how fast the PID regulator performs integral adjustment on the deviation between the PID feedback amount and the given amount. Integral time means that when the deviation between PID feedback quantity and given quantity is 100%, the integral regulator (ignoring proportional action and differential action) is continuously adjusted after this time, and the adjustment quantity reaches the maximum frequency (F0.09). The shorter the integration time, the greater the adjustment intensity.
2052
2053 Differential time D: determines the intensity of the PID regulator to adjust the rate of change of the deviation between the PID feedback quantity and the given quantity. Differential time means that if the feedback amount changes 100% within this time, the adjustment amount of the differential regulator is the maximum frequency (F0.09) (ignoring proportional action and integral action). The longer the derivative time, the greater the adjustment intensity.
2054
2055 (% class="table-bordered" %)
2056 |(% rowspan="2" %)**F9.08**|(% colspan="2" %)PID reverse cut-off frequency|Default|0.00Hz
2057 |Setting range|(% colspan="3" %)0.00~~F0.10
2058 |(% rowspan="2" %)**F9.09**|(% colspan="2" %)PID deviation limit|Default|0.01%
2059 |(% colspan="2" %)Setting range|(% colspan="2" %)0. 0%~~100.0%
2060
2061 Deviation limit: When the PID feedback deviation is within this range, PID stops adjusting;
2062
2063 (% class="table-bordered" %)
2064 |(% rowspan="2" %)**F9.10**|PID differential limit range|Default|0.10%
2065 |Setting range|(% colspan="2" %)0.00%~~100.00%
2066 |(% rowspan="2" %)**F9.11**|PID setting change time|Default|0.00s
2067 |Setting range|(% colspan="2" %)0.00s~~650.00s
2068
2069 PID given change time refers to the time required for the actual value of PID to change from 0.0% to 100.0%.
2070
2071 When the PID setting changes, the actual value of the PID setting will not respond immediately. Moreover, it changes linearly according to the given change time to prevent the given mutation from occurring.
2072
2073 (% class="table-bordered" %)
2074 |(% rowspan="2" %)**F9.12**|PID feedback filtering time|Default|0.00s
2075 |Setting range|(% colspan="2" %)0.00s~~60.00s
2076 |(% rowspan="2" %)**F9.13**|PID output filtering time|Default|0.00s
2077 |Setting range|(% colspan="2" %)0.00s~~60.00s
2078
2079 Filter the PID feedback and output value to eliminate sudden changes.
2080
2081 (% class="table-bordered" %)
2082 |(% rowspan="2" %)**F9.14**|(% colspan="2" %)Proportional gain P2|Default|20.0
2083 |Setting range|(% colspan="3" %)0.0~~100.0
2084 |(% rowspan="2" %)**F9.15**|(% colspan="2" %)Integral time I2|Default|2.00s
2085 |Setting range|(% colspan="3" %)0.01s~~10.00s
2086 |(% rowspan="2" %)**F9.16**|(% colspan="2" %)Differential time D2|Default|0.000s
2087 |Setting range|(% colspan="3" %)0.00~~10.000
2088
2089 The setting method is similar to F9.05, F9.06, F9.07. It is used in situations where PID parameter changes are required, see F9.18 introduction.
2090
2091 (% class="table-bordered" %)
2092 |(% rowspan="4" %)**F9.17**|(% colspan="3" %)PID parameter switchover condition|Default|0
2093 |(% rowspan="3" %)Setting range|0|(% colspan="3" %)No switchover
2094 |1|(% colspan="3" %)DI terminal
2095 |2|(% colspan="3" %)Automatic switchover based on deviation
2096 |(% rowspan="2" %)**F9.18**|(% colspan="3" %)PID parameter switchover deviation 1|Default|20.0%
2097 |Setting range|(% colspan="4" %)0.0%~~F9.20
2098 |(% rowspan="2" %)**F9.19**|(% colspan="3" %)PID parameter switchover deviation 2|Default|80.0%
2099 |Setting range|(% colspan="4" %)F9.19~~100.0%
2100
2101 In some applications, a set of PID parameters may not satisfy the entire running process. At this time, multiple groups of PID parameters may need to be switched.
2102
2103 When not switching, the PID parameter is constant as parameter group 1.
2104
2105 When the DI terminal is switched, the multi-function terminal function selection is 43: When the PID parameter switching terminal and the terminal is valid, the parameter group 2 is selected, otherwise, the parameter group 1 is selected.
2106
2107 To switch automatically according to the deviation, when the deviation between the reference and the feedback is less than the PID parameter switching deviation 1 (F9.19), use F9.05, F9.06, F9.07 as the PID adjustment parameters, and the deviation between the reference and the feedback When it is greater than PID switching deviation 2 (F9.20), use F9.15, F9.16, and F9.17 as PID adjustment parameters. The PID parameters of the deviation segment between the switching deviation 1 and the switching deviation 2 are two sets of PID parameters linear switching.
2108
2109 (% class="table-bordered" %)
2110 |(% rowspan="2" %)**F9.20**|(% colspan="2" %)PID initial value|Default|0.0%
2111 |Setting range|(% colspan="3" %)0.0%~~100.0%
2112 |(% rowspan="2" %)**F9.21**|(% colspan="2" %)PID initial value holding time|Default|0.00s
2113 |Setting range|(% colspan="3" %)0.00s~~650.00s
2114
2115 When PID is running, the inverter will first run with PID initial value (F9.21) given output and the duration is F9.22 (PID initial value holding time), and then start normal PID adjustment.
2116
2117 (% class="table-bordered" %)
2118 |(% rowspan="2" %)**F9.22**|(% colspan="2" %)Two output deviation forward maximum value|Default|1.00%.
2119 |Setting range|(% colspan="3" %)0.00%~~100.00%
2120 |(% rowspan="2" %)**F9.23**|(% colspan="2" %)Two output deviation reverse maximum value|Default|1.00%
2121 |Setting range|(% colspan="3" %)0.00%~~100.00%
2122
2123 This function code is used to limit the difference between the two beats (2ms/beat) of the PID output, so as to prevent the PID output from changing too fast. F9.23 and F9.24 respectively correspond to the maximum output deviation during forward and reverse rotation.
2124
2125 (% class="table-bordered" %)
2126 |(% rowspan="7" %)**F9.24**|(% colspan="3" %)PID integral property|Default|00
2127 |(% rowspan="6" %)Setting range|Ones Place|(% colspan="3" %)Integration separation
2128 |0|(% colspan="3" %)Disabled
2129 |1|(% colspan="3" %)Enabled
2130 |Tens Place|(% colspan="3" %)Output to limit value
2131 |0|(% colspan="3" %)Continue the integral
2132 |1|(% colspan="3" %)Stop the integral
2133
2134 Integration separation
2135
2136 When it is valid, if terminal function 22: integral pause is valid, the PID integral operation will stop. Only proportional and derivative are calculated.
2137
2138 Output to limit value
2139
2140 If it is to stop integration, when the PID output value reaches the maximum or minimum value, the PID integration stops calculating.
2141
2142 If it is continuous integration, the PID integration will be calculated at any time
2143
2144 (% class="table-bordered" %)
2145 |(% rowspan="2" %)**F9.25**|(% colspan="2" %)Detection value of PID feedback loss|Default|0.0%
2146 |Setting range|(% colspan="3" %)(((
2147 0.0%:No judging feedback loss
2148
2149 0.1%~~100.0%
2150 )))
2151 |(% rowspan="2" %)**F9.26**|(% colspan="2" %)Detection time of PID feedback loss|Default|0.0s
2152 |Setting range|(% colspan="3" %)0.0s~~20.0s
2153
2154 This function code is used to judge whether PID feedback is lost. When the PID feedback is less than the feedback loss detection value (F9.26) and the duration reaches F9.27 (feedback loss detection time), the inverter reports a fault and runs according to the fault handling method.
2155
2156 (% class="table-bordered" %)
2157 |(% rowspan="3" %)**F9.27**|(% colspan="3" %)PID operation at stop|Default|0
2158 |(% rowspan="2" %)Setting range|0|(% colspan="3" %)No PID operation at stop
2159 |1|(% colspan="3" %)PID operation at stop
2160
2161 (% class="table-bordered" %)
2162 |(% rowspan="3" %)**F9.28**|(% colspan="2" %)PID function selection|Default|0
2163 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Normal PID
2164 |1|(% colspan="2" %)Sleep PID
2165
2166 0: The inverter runs under normal PID control and the sleep function is invalid.
2167
2168 1: The inverter runs under sleep PID control, and the sleep function is enabled.
2169
2170 (% class="table-bordered" %)
2171 |(% rowspan="2" %)**F9.29**|PID sleep threshold|Default|60.0%
2172 |Setting range|(% colspan="2" %)0.0%~~100.0%
2173 |(% rowspan="2" %)**F9.30**|PID sleep delay|Default|3.0s
2174 |Setting range|(% colspan="2" %)0.0~~3600s
2175 |(% rowspan="2" %)**F9.31**|PID wake-up threshold|Default|20.0%
2176 |Setting range|(% colspan="2" %)0.0%~~100.0%
2177 |(% rowspan="2" %)**F9.32**|PID wake-up time delay|Default|3.0s
2178 |PID wake-up time delay|(% colspan="2" %)0.0~~3600s
2179
2180 When the sleep PID is selected, if the feedback is higher than the setting of F9.29 sleep threshold, the inverter will start the sleep timer. After the sleep delay time set by F9.30, if the feedback amount is still higher than the setting of F9.29 If the feedback is lower than the setting of the wake-up threshold of F9.31, the inverter will start the wake-up timer. After the time set by F9.32 wake-up delay, if the feedback If it is still lower than the set value of F9.31 wake-up threshold, the wake-up is successful and PID control is performed. Refer to Figure 6-22 below to understand the relationship between the above parameters.
2181
2182 (% style="text-align:center" %)
2183 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_229dff56f8f13b95.png]]
2184
2185 Figure 6-10-2 PID sleep and wake-up timing diagram
2186
2187 = FA group faults & protection =
2188
2189 (% class="table-bordered" %)
2190 |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
2191 |(% rowspan="2" %)Setting range|0|Disabled
2192 |1|Enabled
2193
2194 Choose 0: The inverter has no overload protection for the load motor, at this time the thermal relay shall be added in front of the motor;
2195
2196 Choose 1: At this time, the inverter has overload protection function for the motor. See FA.01 for protection value.
2197
2198 (% class="table-bordered" %)
2199 |(% rowspan="2" %)**FA.01**|Motor overload protection gain|Default|1.00
2200 |Setting range|(% colspan="2" %)0.20~~10.00
2201
2202 Motor overload protection is an inverse time curve; 220%×(FA.01)×motor rated current for 1 minute, 150%×(FA.01)×motor rated current for 60 minutes.
2203
2204 (% class="table-bordered" %)
2205 |(% rowspan="2" %)**FA.02**|Motor overload warning coefficient|Default|80%
2206 |Setting range|(% colspan="2" %)50%~~100%
2207
2208 The reference value of this value is the motor overload current. When the inverter detects that the output current reaches (FA.02) × motor overload current and continues for the specified time on the inverse time curve, it outputs a pre-alarm signal from DO or relay.
2209
2210 (% class="table-bordered" %)
2211 |(% rowspan="2" %)**FA.03**|Overvoltage stall gain|Default|10
2212 |Setting range|(% colspan="2" %)0 (Invalid)~~100
2213
2214 Adjust the inverter's ability to suppress overvoltage stall. The larger the value, the stronger the ability to suppress overvoltage.
2215
2216 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2217
2218 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overvoltage faults may occur.
2219
2220 (% class="table-bordered" %)
2221 |(% rowspan="2" %)**FA.04**|Overvoltage stall protective voltage|Default|130%
2222 |Setting range|(% colspan="2" %)120%~~150%(3 phase)
2223
2224 Select the protection point of the overvoltage stall function. When this value is exceeded, the inverter starts to perform the over-voltage stall protection function.
2225
2226 (% class="table-bordered" %)
2227 |(% rowspan="2" %)**FA.05**|Overcurrent stall gain|Default|Model dependent
2228 |Setting range|0~~100|
2229
2230 Adjust the inverter's ability to suppress excessive stall speed. The larger the value, the stronger the ability to suppress overcurrent.
2231
2232 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2233
2234 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overcurrent faults may occur.
2235
2236 (% class="table-bordered" %)
2237 |(% rowspan="2" %)**FA.06**|Overvoltage stall protective current|Default|150%
2238 |Setting range|(% colspan="2" %)100%~~200%
2239
2240 Select the current protection point for the over-current stall function. When this value is exceeded, the inverter starts to perform the overcurrent stall protection function.
2241
2242 (% class="table-bordered" %)
2243 |(% rowspan="3" %)**FA.07**|(% colspan="2" %)Short-circuit to ground upon power-on|Default|1
2244 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2245 |1|(% colspan="2" %)Enabled
2246
2247 The inverter can be selected to detect whether the motor has a ground protection short-circuit fault when the inverter is powered on. If this function is valid, the inverter will output for a short time at the moment of power-on.
2248
2249 (% class="table-bordered" %)
2250 |(% rowspan="2" %)**FA.08**|Fault auto reset times|Default|0
2251 |Setting range|(% colspan="2" %)0~~5
2252
2253 When the inverter selects automatic fault reset, it is used to set the number of times that can be reset automatically. If the value exceeds this value, the inverter will be on standby and waiting for repair.
2254
2255 (% class="table-bordered" %)
2256 |(% rowspan="2" %)**FA.09**|Relay action during fault auto reset|Default|0
2257 |Setting range|(% colspan="2" %)0:Disabled; 1:Enabled
2258
2259 After selecting the inverter fault automatic reset function, during the execution of the fault reset, through this parameter setting, you can decide whether the fault relay is required to act, so as to shield the fault alarm caused by this and make the equipment continue to run.
2260
2261 (% class="table-bordered" %)
2262 |(% rowspan="2" %)**FA.10**|(% colspan="2" %)Time interval of fault auto reset|Default|1.0s
2263 |Setting range|(% colspan="3" %)0.1s~~100.0s
2264
2265 The waiting time for the inverter from the fault alarm to the automatic reset of the fault.
2266
2267 (% class="table-bordered" %)
2268 |(% rowspan="2" %)**FA.11**|(% colspan="2" %)Input phase loss protection|Default|Model dependent
2269 |Setting range|(% colspan="3" %)(((
2270 0:Disabled
2271
2272 1:Enabled
2273 )))
2274
2275 Choose whether to protect the input phase loss.
2276
2277 (% class="table-bordered" %)
2278 |(% rowspan="2" %)**FA.12**|(% colspan="2" %)Output phase loss protection|Default|1
2279 |Setting range|(% colspan="3" %)(((
2280 0:Disabled
2281
2282 1:Enabled
2283 )))
2284
2285 Choose whether to protect the output phase loss.
2286
2287 (% class="table-bordered" %)
2288 |(% rowspan="9" %)**FA.13**|(% colspan="2" style="width:442px" %)Fault protection action selection 1|(% style="width:451px" %)Default|(% colspan="2" %)00000
2289 |(% rowspan="8" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Motor Overload(Err11)
2290 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2291 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2292 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Continue to run
2293 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Input Phase Loss(Err12) (0~~2,as ones place)
2294 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Output Phase Loss (Err13) (0~~2,as ones place)
2295 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)External Fault(Err15) (0~~2,as ones place)
2296 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Communication Fault(Err16) (0~~2,as ones place)
2297 |(% rowspan="11" %)**FA.14**|(% colspan="2" style="width:442px" %)Reserved|(% style="width:451px" %)Default|(% colspan="2" %)
2298 |(% rowspan="10" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Reserved
2299 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2300 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2301 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Reserved
2302 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Reserved
2303 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2304 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2305 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Reserved
2306 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2307 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2308 |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2309 |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2310 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2311 |(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2312 |(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2313 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2314 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2315 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2316 | |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)(((
2317 PID feedback loss during
2318
2319 Running (Err31) (0~~2,as ones place of FA.13)
2320 )))
2321
2322 When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2323
2324 When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
2325
2326 When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2327
2328 (% class="table-bordered" %)
2329 |(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2330 Overcurrent stall Integral coefficient
2331 )))|(% colspan="2" style="width:451px" %)Default|500
2332 |(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2333
2334 Set overcurrent stall Integral coefficient rate.
2335
2336 (% class="table-bordered" %)
2337 |(% rowspan="3" %)(((
2338 **FA.17**
2339 )))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |(((
2340 Default
2341 )))|(((
2342 0
2343 )))
2344 |(% colspan="1" rowspan="2" %)(((
2345 Setting range
2346 )))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)(((
2347 General machine instant stop/no-stop
2348 )))
2349 |1|(% colspan="2" %)Spinning machine instant stop/no-stop
2350
2351 Set the mode of instant stop and no-stop.
2352
2353 (% class="table-bordered" %)
2354 |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
2355 |Setting range|(% colspan="2" %)60.0%~~140.0%
2356
2357 Adjusting this parameter can adjust the voltage point at which the inverter reports undervoltage fault (Err09), and 100.0% corresponds to 350V.
2358
2359 (% class="table-bordered" %)
2360 |(% rowspan="2" %)**FA.19**|Overvoltage setting|Default|810.0V
2361 |Setting range|(% colspan="2" %)200.0V ~~ 2500.0V
2362
2363 Generally, this parameter is not adjusted after the inverter leaves the factory. If there is frequent overvoltage during operation, please consult the manufacturer's customer service department before making adjustments.
2364
2365 (% class="table-bordered" %)
2366 |(% rowspan="6" %)**FA.20**|(% colspan="2" %)Continue running frequency selection during failure|Default|0
2367 |(% rowspan="5" %)Setting range|0|(% colspan="2" %)Run with the current run frequency
2368 |1|(% colspan="2" %)Run with the setting frequency
2369 |2|(% colspan="2" %)Run with the upper limit frequency
2370 |3|(% colspan="2" %)Run with lower limit frequency.
2371 |4|(% colspan="2" %)(((
2372 Run with standby frequency when abnormal
2373
2374 (FA.21)
2375 )))
2376 |(% rowspan="2" %)**FA.21**|(% colspan="2" %)Abnormal standby frequency setting|Default|100.0%(Current set frequency)
2377 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%
2378
2379 When a fault occurs during the operation of the inverter and the fault handling method is keep running, the inverter prompts A~*~* and runs at the set frequency determined by this function.
2380
2381 (% class="table-bordered" %)
2382 |(% rowspan="4" %)**FA.22**|(% colspan="2" %)Action selection at instantaneous power failure|Default|0
2383 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Invalid
2384 |1|(% colspan="2" %)Stop as Deceleration time 1
2385 |2|(% colspan="2" %)Stop as Deceleration time 2
2386 |(% rowspan="2" %)**FA.23**|(% colspan="2" %)Action pause judging voltage at instantaneous power failure|Default|90.0%
2387 |(% colspan="2" %)Setting range|(% colspan="2" %)80.0%~~100.0%(Standard Bus Voltage)
2388 |(% rowspan="2" %)**FA.24**|(% colspan="2" %)Voltage rally judging time at instantaneous power failure|Default|0.50s
2389 |(% colspan="2" %)Setting range|(% colspan="2" %)0.00s~~100.00s
2390 |(% rowspan="2" %)**FA.25**|(% colspan="2" %)Action judging voltage at instantaneous power failure|Default|80.0%
2391 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%( Standard Bus Voltage)
2392
2393 This function means that the inverter will not stop when the power is cut instantaneously. In the case of an instantaneous power failure or a sudden voltage drop, the inverter will reduce its output speed, and compensate for the voltage drop by feeding back energy through the load to keep the inverter running in a short time.
2394
2395 If the instantaneous stop non-stop function selection is valid, when the bus voltage is lower than the voltage indicated by the instantaneous stop non-stop action judgment voltage (FA.25), the inverter will decelerate according to the instantaneous stop action selection. When the stop action judgment voltage (FA.25) represents the voltage, and the duration is maintained for the momentary stop and non-stop voltage rise judgment time (FA.24), the inverter resumes the set frequency operation; otherwise the inverter will continue to reduce the operating frequency to Stop at 0 o'clock. Instantaneous stop non-stop function if shown.
2396
2397 The deceleration time of instantaneous power failure is too long, the load feedback energy is small, and the low voltage can not be effectively compensated; the deceleration time is too short, the load feedback energy is large, which will cause overvoltage protection. Please adjust the deceleration time appropriately according to the load inertia and the weight of the load.
2398
2399 (% class="table-bordered" %)
2400 |(% rowspan="3" %)**FA.26**|(% colspan="2" %)Loss of loads protection options|Default|0
2401 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2402 |1|(% colspan="2" %)Enabled
2403 |(% rowspan="2" %)**FA.27**|(% colspan="2" %)Loss of loads detection level|Default|10.0%
2404 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0%~~100.0%(Motor rated current)
2405 |(% rowspan="2" %)**FA.28**|(% colspan="2" %)Loss of loads detection time|Default|1.0s
2406 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s~~60.0s
2407
2408 If this function is valid, when the inverter loses load, the inverter reports Err30 fault, and the output frequency is 7% of the rated frequency; if the load is restored, it will run at the set frequency. The off-load detection level and detection time can be set.
2409
2410 (% class="table-bordered" %)
2411 |(% rowspan="6" %)**FA.29**|(% colspan="2" %)The decimal point of the frequency in failure state|Default|222
2412 |(% rowspan="5" %)Setting range|Ones Place|(% colspan="2" %)The third fault frequency decimal point
2413 |1|(% colspan="2" %)1 decimal point
2414 |2|(% colspan="2" %)2 decimal point
2415 |Tens Place|(% colspan="2" %)The second fault frequency decimal point (1~~2,as ones place)
2416 |Hundreds Place|(% colspan="2" %)The first fault frequency decimal point (1~~2,as ones place)
2417
2418 Since the frequency decimal point can be set, this function code is used to record the position of the decimal point of the frequency at the time of failure (for frequency display during failure).
2419
2420 Note: The function code display data is H.xxx, where H. means hexadecimal data.
2421
2422 = FB group frequency swing, length fixing and counting =
2423
2424 The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2425
2426 Swing frequency function means that the output frequency of the inverter swings up and down around the set frequency (frequency command is selected by F0.07). The trajectory of the running frequency on the time axis is shown in the figure below, where the swing amplitude is determined by FB.00 and FB. 01 setting, when FB.01 is set to 0, that is, the swing amplitude is 0, and the swing frequency has no effect.
2427
2428 (% style="text-align:center" %)
2429 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_1c70827204f62468.png]]
2430
2431 Figure 6-12-1 Schematic diagram of swing frequency work
2432
2433 (% class="table-bordered" %)
2434 |(% rowspan="3" %)**FB.00**|(% colspan="2" %)Swing frequency setting mode|Default|0
2435 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Relative to the central frequency
2436 |1|(% colspan="2" %)Relative to the maximum frequency
2437
2438 Use this parameter to determine the reference amount of swing.
2439
2440 0: Relative to the center frequency (F0.07 frequency source selection), a variable swing amplitude system. The swing amplitude changes with the center frequency (set frequency).
2441
2442 1: Relative to the maximum frequency (F0.10 maximum output frequency), it is a fixed swing amplitude system.
2443
2444 (% class="table-bordered" %)
2445 |(% rowspan="2" %)**FB.01**|(% colspan="2" %)Swing frequency amplitude|Default|0.0%
2446 |Setting range|(% colspan="3" %)0.0%~~100.0%
2447 |(% rowspan="2" %)**FB.02**|(% colspan="2" %)Jump frequency amplitude|Default|0.0%
2448 |Setting range|(% colspan="3" %)0.0%~~50.0%
2449
2450 Use this parameter to determine the swing amplitude and kick frequency. The swing frequency operation frequency is restricted by the upper and lower limit frequencies.
2451
2452 The swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0): swing amplitude AW = frequency source F0.07 × swing amplitude FB.01.
2453
2454 The swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1): swing amplitude AW = maximum frequency F0.10× swing amplitude FB.01.
2455
2456 Kick frequency = swing amplitude AW × sudden jump frequency amplitude FB.02. That is, when the swing frequency is running, the value of the kick frequency relative to the swing amplitude.
2457
2458 If the swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0), the kick frequency is the variable value.
2459
2460 If the swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1), the kick frequency is a fixed value.
2461
2462 (% class="table-bordered" %)
2463 |(% rowspan="2" %)**FB.03**|(% colspan="2" %)Swing frequency cycle|Default|10.0s
2464 |Setting range|(% colspan="3" %)0.0s~~3000.0s
2465 |(% rowspan="2" %)**FB.04**|(% colspan="2" %)Triangular wave rising time coefficient|Default|50.0%
2466 |Setting range|(% colspan="3" %)0.0%~~100.0%
2467
2468 Swing frequency cycle: the time value of a complete swing frequency cycle. FB.04 triangle wave rise time coefficient is relative to FB.03 swing frequency period.
2469
2470 Triangular wave rise time = swing frequency period FB.03 × triangular wave rise time coefficient FB.04 (unit: s)
2471
2472 Triangular wave falling time = swing frequency period FB.03 × (1-triangular wave rising time coefficient FB.04) (unit: s)
2473
2474 (% class="table-bordered" %)
2475 |(% rowspan="2" %)**FB.05**|Setting length|Default|1000m
2476 |Setting range|(% colspan="2" %)0m~~65535m
2477 |(% rowspan="2" %)**FB.06**|Actual length|Default|0m
2478 |Setting range|(% colspan="2" %)0m~~65535m
2479 |(% rowspan="2" %)**FB.07**|Number of pulses per meter|Default|100.0
2480 |Setting range|(% colspan="2" %)0.1~~6553.5
2481
2482 The three function codes of set length, actual length and number of pulses per m are mainly used for fixed length control. The length is calculated by the pulse signal input from the digital input terminal, and the corresponding input terminal needs to be set as the length counting input terminal. Generally, when the pulse frequency is high, DI5 input is required.
2483
2484 Actual length = length count input pulse number / pulse number per m
2485
2486 When the actual length FB.06 exceeds the set length FB.05, the multi-function digital output terminal "length reach terminal" will output ON signal (please refer to F1.04 function code)
2487
2488 (% class="table-bordered" %)
2489 |(% rowspan="2" %)**FB.08**|(% colspan="2" %)Set count value|Default|1000
2490 |Setting range|(% colspan="3" %)1~~65535
2491 |(% rowspan="2" %)**FB.09**|(% colspan="2" %)Designated count value|Default|1000
2492 |Setting range|(% colspan="3" %)1~~65535
2493
2494 The count value is counted by inputting the pulse signal from the counter input terminal in the multi-function switch input terminal.
2495
2496 When the count value reaches the set count value, the switch output terminal outputs a signal that the set count value has reached. The counter stops counting.
2497
2498 When the count value reaches the designated count value, the switch output terminal outputs a signal that the designated count value has reached. The counter continues to count and stops at the "set count value".
2499
2500 The designated count value FB.09 should not be greater than the set count value FB.08.
2501
2502 This function is as below:
2503
2504 (% style="text-align:center" %)
2505 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3afe609068e8ab4b.png]]
2506
2507 Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2508
2509 = FC group communication parameters =
2510
2511 (% class="table-bordered" %)
2512 |(% rowspan="2" %)**FC.00**|Local address|Default|1
2513 |Setting range|(% colspan="2" %)00~~247
2514
2515 When the local address is set to 0, it is the broadcast address, which realizes the broadcast function of the host computer. The address of this machine is unique (except the broadcast address), which is the basis for the point-to-point communication between the host computer and the inverter.
2516
2517 (% class="table-bordered" %)
2518 |(% rowspan="9" %)**FC.01**|Baud Rate|(% colspan="2" %)Default|5
2519 |(% rowspan="8" %)Setting range|0|(% colspan="2" %)300 bps
2520 |1|(% colspan="2" %)600 bps
2521 |2|(% colspan="2" %)1200 bps
2522 |3|(% colspan="2" %)2400 bps
2523 |4|(% colspan="2" %)4800 bps
2524 |5|(% colspan="2" %)9600 bps
2525 |6|(% colspan="2" %)19200 bps
2526 |7|(% colspan="2" %)38400 bps
2527
2528 This parameter is used to set the data transmission rate between the host computer and the inverter. Note that the baud rate set by the host computer and the inverter must be consistent, otherwise, the communication cannot be carried out. The greater the baud rate, the faster the communication speed.
2529
2530 (% class="table-bordered" %)
2531 |(% rowspan="5" %)**FC.02**|Data format|Default|3
2532 |(% rowspan="4" %)Setting range|0|No check, data format <8,N,2>
2533 |1|Even parity check, data format <8,E,1>
2534 |2|Odd Parity check, data format <8,0,1>
2535 |3|No check, data format <8,N,1>
2536
2537 The data format set by the host computer and the inverter must be same, otherwise, the communication cannot be carried out.
2538
2539 (% class="table-bordered" %)
2540 |(% rowspan="2" %)**FC.03**|Response delay|Default|2ms
2541 |Setting range|(% colspan="2" %)0~~20ms
2542
2543 Response delay: refers to the intermediate time between the end of the inverter data receiving and the sending of data to the upper computer. If the response delay is less than the system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system will wait after processing the data until the response delay time expires before going to the upper computer. send data.
2544
2545 (% class="table-bordered" %)
2546 |(% rowspan="2" %)**FC.04**|Communication timeout|Default|0.0 s
2547 |Setting range|(% colspan="2" %)0.0 s(Invalid),0.1~~60.0s
2548
2549 When the function code is set to 0.0 s, the communication timeout time parameter is invalid.
2550
2551 When the function code is set to a valid value, if the interval between one communication and the next communication exceeds the communication timeout time, the system will report a communication failure error (Err16). Under normal circumstances, it is set to invalid. If you set the secondary parameters in a continuous communication system, you can monitor the communication status.
2552
2553 (% class="table-bordered" %)
2554 |(% rowspan="3" %)**FC.05**|Communication reading current resolution|Default|0
2555 |(% rowspan="2" %)Setting range|0|0.01A
2556 |1|0.1A
2557
2558 Used to determine the output unit of the current value when the communication reads the output current.
2559
2560 = FD group muti-stage speed and simple plc functions =
2561
2562 The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2563
2564 (% class="table-bordered" %)
2565 |(% rowspan="2" %)**FD.00**|Multistage Speed0|Default|0.0%
2566 |Setting range|(% colspan="2" %)-100.0%~~100.0%; 100.0% for maximum frequency (F0.10)
2567 |(% rowspan="2" %)**FD.01**|Multistage Speed1|Default|0.0%
2568 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2569 |(% rowspan="2" %)**FD.02**|Multistage Speed2|Default|0.0%
2570 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2571 |(% rowspan="2" %)**FD.03**|Multistage Speed3|Default|0.0%
2572 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2573 |(% rowspan="2" %)**FD.04**|Multistage Speed4|Default|0.0%
2574 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2575 |(% rowspan="2" %)**FD.05**|Multistage Speed5|Default|0.0%
2576 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2577 |(% rowspan="2" %)**FD.06**|Multistage Speed6|Default|0.0%
2578 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2579 |(% rowspan="2" %)**FD.07**|Multistage Speed7|Default|0.0%
2580 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2581 |(% rowspan="2" %)**FD.08**|Multistage Speed8|Default|0.0%
2582 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2583 |(% rowspan="2" %)**FD.09**|Multistage Speed9|Default|0.0%
2584 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2585 |(% rowspan="2" %)**FD.10**|Multistage Speed10|Default|0.0Hz
2586 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2587 |(% rowspan="2" %)**FD.11**|Multistage Speed11|Default|0.0%
2588 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2589 |(% rowspan="2" %)**FD.12**|Multistage Speed12|Default|0.0%
2590 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2591 |(% rowspan="2" %)**FD.13**|Multistage Speed13|Default|0.0%
2592 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2593 |(% rowspan="2" %)**FD.14**|Multistage Speed14|Default|0.0%
2594 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2595 |(% rowspan="2" %)**FD.15**|Multistage Speed15|Default|0.0%
2596 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2597
2598 When the frequency source parameters F0.07, F0.03, F0.04 are determined to be the PLC operation mode, you need to set FD.00 ~~ FD.15, FD.16, FD.17, FD.18 ~~ FD.49 to determine them. characteristic.
2599
2600 Note: The symbols of FD.00~~FD.15 determine the running direction of the simple PLC. If it is negative, it means running in the reverse direction.
2601
2602 Simple PLC schematic diagram:
2603
2604 (% class="table-bordered" %)
2605 |(% rowspan="4" %)**FD.16**|(% colspan="2" %)Simple PLC running mode|Default|0
2606 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Stop after the AC Drive runs one cycle
2607 |1|(% colspan="2" %)Keep final values after the AC Drive runs one cycle(running frequency)
2608 |2|(% colspan="2" %)Repeat after the AC Drive runs one cycle
2609 |(% rowspan="7" %)**FD.17**|(% colspan="2" %)Simple PLC retentive selection|Default|00
2610 |(% rowspan="6" %)Setting range|Ones place|(% colspan="2" %)(Retentive upon power failure)
2611 |0|(% colspan="2" %)No
2612 |1|(% colspan="2" %)Yes
2613 |Tens place|(% colspan="2" %)(Retentive upon stop)
2614 |0|(% colspan="2" %)No
2615 |1|(% colspan="2" %)Yes
2616
2617 PLC operation mode
2618
2619 **0: Stop after the AC Drive runs one cycle**
2620
2621 After the inverter completes a single cycle, it stops automatically, and it needs to be given a run command again to start.
2622
2623 **1: Keep final values after the AC Drive runs one cycle(running frequency)**
2624
2625 After the inverter completes a single cycle, it automatically maintains the operating frequency and direction of the last segment.
2626
2627 **2: Repeat after the AC Drive runs one cycle**
2628
2629 After the inverter completes one cycle, it will automatically start the next cycle until the system stops when there is a stop command.
2630
2631 **3: Retentive upon power failure**
2632
2633 PLC power-down memory refers to memorizing the operation stage and frequency of PLC before power-off.
2634
2635 **4: Retentive upon stop**
2636
2637 PLC stop memory is to record the previous PLC running stage and running frequency when stopping.
2638
2639 (% class="table-bordered" %)
2640 |(% rowspan="2" %)**FD.18**|(% colspan="2" %)Running time of simple PLC reference 0|Default|0.0s(h)
2641 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2642 |(% rowspan="2" %)**FD.19**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 0|Default|0
2643 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2644 |(% rowspan="2" %)**FD.20**|(% colspan="2" %)Running time of simple PLC reference 1|Default|0.0s(h)
2645 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2646 |(% rowspan="2" %)**FD.21**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 1|Default|0
2647 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2648 |(% rowspan="2" %)**FD.22**|(% colspan="2" %)Running time of simple PLC reference 2|Default|0.0s(h)
2649 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2650 |(% rowspan="2" %)**FD.23**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 2|Default|0
2651 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2652 |(% rowspan="2" %)**FD.24**|(% colspan="2" %)Running time of simple PLC reference 3|Default|0.0s(h)
2653 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2654 |(% rowspan="2" %)**FD.25**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 3|Default|0
2655 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2656 |(% rowspan="2" %)**FD.26**|(% colspan="2" %)Running time of simple PLC reference 4|Default|0.0s(h)
2657 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2658 |(% rowspan="2" %)**FD.27**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 4|Default|0
2659 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2660 |(% rowspan="2" %)**FD.28**|(% colspan="2" %)Running time of simple PLC reference 5|Default|0.0s(h)
2661 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2662 |(% rowspan="2" %)**FD.29**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 5|Default|0
2663 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2664 |(% rowspan="2" %)**FD.30**|(% colspan="2" %)Running time of simple PLC reference 6|Default|0.0s(h)
2665 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2666 |(% rowspan="2" %)**FD.31**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 6|Default|0
2667 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2668 |(% rowspan="2" %)**FD.32**|(% colspan="2" %)Running time of simple PLC reference 7|Default|0.0s(h)
2669 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2670 |(% rowspan="2" %)**FD.33**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 7|Default|0
2671 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2672 |(% rowspan="2" %)**FD.34**|(% colspan="2" %)Running time of simple PLC reference 8|Default|0.0s(h)
2673 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2674 |(% rowspan="2" %)**FD.35**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 8|Default|0
2675 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2676 |(% rowspan="2" %)**FD.36**|(% colspan="2" %)Running time of simple PLC reference 9|Default|0.0s(h)
2677 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2678 |(% rowspan="2" %)**FD.37**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 9|Default|0
2679 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2680 |(% rowspan="2" %)**FD.38**|(% colspan="2" %)Running time of simple PLC reference 10|Default|0.0s(h)
2681 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0 s(h)~~6553.5s(h)
2682 |(% rowspan="2" %)**FD.39**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 10|Default|0
2683 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2684 |(% rowspan="2" %)**FD.40**|(% colspan="2" %)Running time of simple PLC reference 11|Default|0.0s(h)
2685 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2686 |(% rowspan="2" %)**FD.41**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 11|Default|0
2687 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2688 |(% rowspan="2" %)**FD.42**|(% colspan="2" %)Running time of simple PLC reference 12|Default|0.0s(h)
2689 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2690 |(% rowspan="2" %)**FD.43**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 12|Default|0
2691 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2692 |(% rowspan="2" %)**FD.44**|(% colspan="2" %)Running time of simple PLC reference 13|Default|0.0s(h)
2693 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2694 |(% rowspan="2" %)**FD.45**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 13|Default|0
2695 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2696 |(% rowspan="2" %)**FD.46**|(% colspan="2" %)Running time of simple PLC reference 14|Default|0.0s(h)
2697 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2698 |(% rowspan="2" %)**FD.47**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 14|Default|0
2699 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2700 |(% rowspan="2" %)**FD.48**|(% colspan="2" %)Running time of simple PLC reference 15|Default|0.0s(h)
2701 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2702 |(% rowspan="2" %)**FD.49**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 15|Default|0
2703 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2704 |(% rowspan="4" %)**FD.50**|(% colspan="2" %)Time unit of simple PLC running|Default|0
2705 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)s:second
2706 |1|(% colspan="2" %)h:hour
2707 |2|(% colspan="2" %)min:minute
2708 |(% rowspan="8" %)**FD.51**|(% colspan="2" %)The source of multistage speed 0|Default|0
2709 |(% rowspan="7" %)Setting range|0|(% colspan="2" %)Set by FD.00
2710 |1|(% colspan="2" %)AI1
2711 |2|(% colspan="2" %)AI2
2712 |3|(% colspan="2" %)Reserved
2713 |4|(% colspan="2" %)Reserved
2714 |5|(% colspan="2" %)PID
2715 |6|(% colspan="2" %)Set by preset frequency (F0.08)
2716
2717 This parameter determines the target quantity given channel of multi-speed 0.
2718
2719 = FE group user password management =
2720
2721 (% class="table-bordered" %)
2722 |(% rowspan="2" %)**FE.00**|User password|Default|0
2723 |Setting range|(% colspan="2" %)0~~65535
2724
2725 Set to any non-zero number, the password protection function will take effect.
2726
2727 00000: Clear the previously set user password value and disable the password protection function.
2728
2729 When the user password is set and effective, when entering the parameter setting state again, if the user password is incorrect, you can only view the parameters, but
2730
2731 cannot modify the parameters. Please keep in mind the user password. If you accidentally set it by mistake or forget it, please contact the manufacturer.
2732
2733 (% class="table-bordered" %)
2734 |(% rowspan="2" %)**FE.01**|Fault record display times|Default|5
2735 |Setting range|(% colspan="2" %)0~~15
2736
2737 This function code is used to set the number of displaying fault records.