Wiki source code of 8 Function parameter details

Version 6.1 by Jim(Forgotten) on 2023/04/13 09:53

Show last authors
1 = 1 F0 group basic parameters =
2
3 (% class="table-bordered" %)
4 |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
5 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Sensorless vector control(SVC)
6 |1|(% colspan="2" %)V/F Control
7
8 0: Sensorless vector control(SVC)
9
10 Refers to the open loop vector. It is suitable for general high-performance control occasions, one AC drive can only drive one motor. Such as machine tools, centrifuges, wire drawing machines, injection molding machines and other loads.
11
12 1: V/F Control
13
14 It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15
16 **✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
17
18 (% class="table-bordered" %)
19 |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
20 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Keypad control
21 |1|(% colspan="2" %)Terminal control
22 |2|(% colspan="2" %)Communication control
23
24 Select the source of AC drive control command.
25
26 AC drive commands include: start, stop, forward, reverse, jog, etc.
27
28 0: Keypad control(“LOCAL/REMOT”LED off);
29
30 Command control is performed by the RUN and STOP/RESET keys on the Keypad.
31
32 1: Terminal control(“LOCAL/REMOT”LED on);
33
34 Command control is carried out by multi-function input terminals FWD, REV, FJOG, RJOG, etc.
35
36 2: Communication control(“LOCAL/REMOT”Led blinking)
37
38 Command control is given by the upper machine through communication.
39
40 (% class="table-bordered" %)
41 |(% rowspan="3" %)**F0.02**|(% colspan="2" %)UP/DOWN standard|Default|0
42 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Running frequency
43 |1|(% colspan="2" %)Set frequency
44
45 This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
46
47 (% class="table-bordered" %)
48 |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
49 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
50 |1|(% colspan="2" %)Digital setting (retentive at power failure)
51 |2|(% colspan="2" %)AI1
52 |3|(% colspan="2" %)AI2
53 |4|(% colspan="2" %)Reserved
54 |5|(% colspan="2" %)Reserved
55 |6|(% colspan="2" %)Multi-stage speed setting
56 |7|(% colspan="2" %)Simple PLC
57 |8|(% colspan="2" %)PID
58 |9|(% colspan="2" %)Communication setting
59
60 Select the main source of the AC drive’s input frequency. There are 10 main frequency sources:
61
62 **0:** Digital setting (non-retentive at power failure)
63
64 The initial value is 0. The frequency can be increased or decreased by the pulse knob, and the set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
65
66 Non-retentive means that after the AC drive is powered off, the set frequency value will be restored to 0; it will be cleared after switching as the frequency source, so this parameter should not be the object of frequency source switching.
67
68 **1: **Digital setting (retentive at power failure)
69
70 The initial value is the value of F0.08 "Keypad setting frequency".
71
72 The set frequency value of the inverter can be changed by the ▲/▼ keys of the keyboard (or UP and DOWN of the multi-function input terminals).
73
74 Retentive means that when the AC drive is powered on again after power failure, the set frequency is the value before the last power failure (note that it is used in conjunction with F0.23).
75
76 **2: **AI1
77
78 **3:** AI2
79
80 Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
81
82 **4/5: **PULSE setting(Reserved)
83
84 The set frequency is given by the terminal pulse.
85
86 Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz.
87
88 Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
89
90 **6: **Multi-stage speed
91
92 Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency.
93
94 **7: **Simple PLC
95
96 Select simple PLC mode. When the frequency source is simple PLC, you need to set the FD group "multi-speed and PLC" parameters to determine the set frequency.
97
98 **8: **PID
99
100 Select process PID control. At this time, you need to set the F9 group "PID function of process control ". The running frequency of the inverter is the frequency value after PID action. For the meaning of PID given source, given amount, feedback source, etc., please refer to the introduction of "PID Function of process control" in F9 group.
101
102 **9: **Communication setting
103
104 Means that the main frequency source is given by the upper machine through communication.
105
106 (% class="table-bordered" %)
107 |(% rowspan="11" %)**F0.04**|(% colspan="2" %)Setting auxiliary frequency source Y|Default|0
108 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
109 |1|(% colspan="2" %)Digital setting (retentive at power failure)
110 |2|(% colspan="2" %)AI1
111 |3|(% colspan="2" %)AI2
112 |4|(% colspan="2" %)Reserved
113 |5|(% colspan="2" %)Reserved
114 |6|(% colspan="2" %)Multi-stage speed setting
115 |7|(% colspan="2" %)Simple PLC
116 |8|(% colspan="2" %)PID
117 |9|(% colspan="2" %)Communication setting
118
119 When the auxiliary frequency source is used as an independent frequency given channel (that is, the frequency source is selected to switch from X to Y), its usage is the same as that of the main frequency source X.
120
121 When the auxiliary frequency source is used as a superimposed reference (that is, the frequency source is selected as X+Y, X to X+Y switching or Y to X+Y switching), there are the following special features:
122
123 ~1. When the auxiliary frequency source is digital setting or pulse knob setting, the preset frequency (F0.08) does not work. You can use the ▲/▼ keys of the keyboard (or UP, DOWN of the multi-function input terminal) to adjust up and down based on the given frequency.
124
125 2. When the auxiliary frequency source is analog input setting (AI1, AI2) or pulse input setting, 100% of the input setting corresponds to the auxiliary frequency source range (see the description of F0.05 and F0.06). If you need to adjust up and down on the basis of the main set frequency, please set the corresponding setting range of the analog input to .n%~~+n%.
126
127 3. When the frequency source is pulse input setting, it is similar to analog input setting.
128
129 Tip: The selection of auxiliary frequency source Y and the main frequency source X cannot be the same, that is, the main and auxiliary frequency sources cannot use the same frequency given channel.
130
131 (% class="table-bordered" %)
132 |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
133 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
134 |1|(% colspan="2" %)Relative to the frequency source X
135 |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
136 |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
137
138 When the frequency source is selected as the frequency superposition setting (F0.07 is set to 1, 3 or 4), it is used to determine the adjustment range of the auxiliary frequency source. F0.05 is used to determine the relative object of the range. If it is relative to the maximum frequency (F0.10), its range is a fixed value; if it is relative to the main frequency source X, its range will follow the change of main frequency source X.
139
140 (% class="table-bordered" %)
141 |(% rowspan="13" %)**F0.07**|(% colspan="2" %)Frequency reference selection|Default|0
142 |(% rowspan="12" %)Setting Range|One’s digit|(% colspan="2" %)Selection of frequency source
143 |0|(% colspan="2" %)main frequency source X
144 |1|(% colspan="2" %)main and auxiliary calculation results(The calculation relationship is determined by the ten’s digits)
145 |2|(% colspan="2" %)Switchover between X and Y
146 |3|(% colspan="2" %)Switchover between X and main (X) & auxiliary(Y) calculation
147 |4|(% colspan="2" %)Switchover between Y and main (X) & auxiliary(Y) calculation
148 |Ten’s digit|(% colspan="2" %)X and Y calculation relationship
149 |0|(% colspan="2" %)X+Y
150 |1|(% colspan="2" %)X-Y
151 |2|(% colspan="2" %)MAX(X, Y)
152 |3|(% colspan="2" %)MIN(X, Y)
153 |4|(% colspan="2" %)X* Y
154
155 Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
156
157 One’s digit:Selection of frequency source
158
159 0:main frequency source X
160
161 The main frequency X is used as the target frequency.
162
163 1: main and auxiliary calculation results
164
165 The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
166
167 2: Switchover between X and Y
168
169 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
170
171 When the multi-function input terminal 18: frequency source switching is valid, the auxiliary frequency source Y is taken as the target frequency.
172
173 3: Switchover between X and main (X) & auxiliary(Y) calculation
174
175 When the multi-function input terminal 18: frequency source switching is invalid, the main frequency source X is taken as the target frequency.
176
177 When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
178
179 4: Switchover between Y and main (X) & auxiliary(Y) calculation
180
181 When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
182
183 When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
184
185 Ten’s digit:X and Y calculation relationship:
186
187 0: X+Y
188
189 The sum of the main frequency source X and the auxiliary frequency source Y serves as the target frequency. Realize frequency superposition given function.
190
191 1: X-Y
192
193 The difference between the main frequency source X and the auxiliary frequency source Y serves as the target frequency.
194
195 2: MAX(X, Y)
196
197 Take the main frequency source X and auxiliary frequency source Y with the largest absolute value as the target frequency.
198
199 3: MIN(X, Y)
200
201 Take the main frequency source X and the auxiliary frequency source Y with the smallest absolute value as the target frequency.
202
203 4: X * Y
204
205 The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
206
207 (% class="table-bordered" %)
208 |(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
209 |Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
210
211 When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
212
213 (% class="table-bordered" %)
214 |(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
215 |(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
216 |1|(% colspan="2" %)Reverse direction
217
218 By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
219
220 Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
221
222 (% class="table-bordered" %)
223 |(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
224 |(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
225 |(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
226 |(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
227 |1|(% colspan="2" %)AI1
228 |2|(% colspan="2" %)AI2
229 |3|(% colspan="2" %)Reserved
230 |4|(% colspan="2" %)Reserved
231 |5|(% colspan="2" %)Communication setting
232
233 Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
234
235 For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
236
237 (% class="table-bordered" %)
238 |(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
239 |Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
240 |(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
241 |Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
242
243 When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
244
245 (% class="table-bordered" %)
246 |(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
247 |Setting Range|(% colspan="2" %)0.00Hz~~F0.12
248
249 When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
250
251 (% class="table-bordered" %)
252 |(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
253 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
254 |1|(% colspan="2" %)Stop
255 |2|(% colspan="2" %)Standby(Running at 0 Hz)
256
257 Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
258
259 (% class="table-bordered" %)
260 |(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
261 |Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
262
263 This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
264
265 When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
266
267 When the carrier frequency is high, the motor loss will decrease and the motor temperature rise will decrease, but the AC drive loss will increase, the AC drive temperature rise will increase, and the interference will increase.
268
269 The effect of adjusting the carrier frequency on the following performance:
270
271 (% class="table-bordered" %)
272 |Carrier Frequency|Low  → High
273 |Motor Noise|Much → Little
274 |Output Current Waveform|Bad  → Good
275 |Motor Temperature Rise|High  →  Low
276 |AC Drive Temperature Rise|Low  → High
277 |Leakage Current|Low  → High
278 |External Radiation Interference|Low  → High
279
280 (% class="table-bordered" %)
281 |(% rowspan="2" %) **F0.17**|PWM Output Method Selection|Default|0
282 |Setting Range|(% colspan="2" %)(((
283 0:5/7-stage automatic switching
284
285 1:7-stage
286 )))
287
288 Method selection of PWM Output Method
289
290 (% class="table-bordered" %)
291 |(% rowspan="2" %)**F0.18**|Acceleration Time 1|Default|Model Dependent
292 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
293 |(% rowspan="2" %)**F0.19**|Deceleration Time 1|Default|Model Dependent
294 |Setting Range|(% colspan="2" %)0.0s~~6500.0s
295
296 The acceleration time refers to the time required to accelerate from zero frequency to the acceleration/deceleration base frequency (determined by F0.24), see t1 in Figure 6-1-1.
297
298 The deceleration time refers to the time required to decelerate from the acceleration/deceleration base frequency (determined by F0.24) to zero frequency, see t2 in Figure 6-1-1.
299
300
301 (% style="text-align:center" %)
302 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a0c9063bc45a4ec4.png]]
303
304 Figure 6-1-1 Schematic diagram of acceleration and deceleration time
305
306 Pay attention to the difference between actual acceleration and deceleration time and set acceleration and deceleration time.
307
308 There are 4 groups of acceleration and deceleration time options
309
310 Group 1: F0.18. F0.19;
311
312 Group 2: F8.03. F8.04;
313
314 Group 3: F8.05. F8.06;
315
316 Group 4: F8.07. F8.08.
317
318 The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
319
320 (% class="table-bordered" %)
321 |(% rowspan="4" %)**F0.20**|(% colspan="2" %)Default setting restoring|Default|0
322 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)No operation
323 |1|(% colspan="2" %)Restore to factory default setting (not including motor parameters )
324 |2|(% colspan="2" %)clear fault record 
325
326 After changing this parameter to 1 or 2, all parameters will be initialized, and then this parameter will be reset to 0 automatically.
327
328 1: Restoring default settings,not including the F2 group parameters and error records.
329
330 2: Cleaning error records.
331
332 Cleaning error records. accumulative running time(F7.09). accumulative power-on time(F7.13). accumulative power consumption(F7.14).
333
334 (% class="table-bordered" %)
335 |(% rowspan="3" %)**F0.21**|(% colspan="2" %)Function code modification attribute|Default|0
336 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Modifiable
337 |1|(% colspan="2" %)Non-modifiable
338
339 Function code modification attribute,After locking, it can prevent the parameter value from being changed by mistake
340
341 0:All parameters can be changed
342
343 1:All parameters can only be viewed,but not changed,except F0.21
344
345 (% class="table-bordered" %)
346 |(% rowspan="3" %)**F0.22**|(% colspan="2" %)Digital setting frequency shutdown memory selection|Default|1
347 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Non-retentive
348 |1|(% colspan="2" %)Retentive
349
350 This function is only valid when frequency source is digital setting
351
352 0: Non-retentive, Refers to the digital set frequency value restored to the set value of F0.08 after the AC drive stops.
353
354 1: Retentive, Refers to the digital set frequency value restored to the set frequency after the AC drive stops.
355
356 (% class="table-bordered" %)
357 |(% rowspan="4" %)**F0.23**|(% colspan="2" %)Acceleration & deceleration time unit|Default|1
358 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)1s
359 |1|(% colspan="2" %)0.1s
360 |2|(% colspan="2" %)0.01s
361
362 This function is used to determine all acceleration and deceleration time units. Note that when the value is modified, the actual acceleration/deceleration time will also change accordingly (the position of the decimal point changes, and the actual display digits remain unchanged), so it is necessary to readjust the size of various acceleration/deceleration settings according to the situation. Pay attention to the following function codes: F0.18, F0.19, F8.01, F8.02, F8.03, F8.04, F8.05, F8.06, F8.07, F8.08.
363
364 (% class="table-bordered" %)
365 |(% rowspan="4" %)**F0.24**|(% colspan="2" %)Base Frequency of Acceleration & Deceleration Time|Default|0
366 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Maximum frequency(F0.10)
367 |1|(% colspan="2" %)Set Frequency
368 |2|(% colspan="2" %)100Hz
369
370 Define the frequency range corresponding to the acceleration and deceleration time. See Figure 6.1 Acceleration and deceleration time diagram
371
372 (% class="table-bordered" %)
373 |(% rowspan="3" %)**F0.25**|(% colspan="2" %)Cooling Fan Running Option|Default|0
374 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Automatic running
375 |1|(% colspan="2" %)Keep running when power on
376
377 This function is used to set the operating mode of the cooling fan. This setting can be adjusted according to changes in operating conditions to achieve a balance between maintaining continuous maximum heat dissipation and extending fan life.
378
379 0: Automatic running.When the motor is running, the fan runs; when the motor stops, the fan stops running after a delay of 30 seconds. When the temperature of the AC drive module exceeds 50 degrees, the fan also starts to run.
380
381 1: Keep running .The fan will keep running after AC drive is powered on
382
383 (% class="table-bordered" %)
384 |(% rowspan="3" %)**F0.26**|(% colspan="2" %)Frequency Command Decimal Point|Default|2
385 |(% rowspan="2" %)Setting range|1|(% colspan="2" %)One Decimal Place
386 |2|(% colspan="2" %)Two Decimal Place
387
388 The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
389
390 = 2 F1 group start & stop control =
391
392 (% class="table-bordered" %)
393 |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
394 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Start directly(When the starting DC braking time is not 0, the DC braking will be performed first)
395 |1|(% colspan="2" %)Speed tracing and start
396 |2|(% colspan="2" %)Pre-excitation start(When the pre-excitation time is not 0, first pre-excitation and then start)
397
398 0: Start directly
399
400 if F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the startup frequency. When the setting is not 0, implement DC braking first and then start, which can solve the problem of reverse rotation when starting with small inertia load.
401
402 1: Speed tracing and start
403
404 The AC drive first detects the rotation and speed of the motor, and then starts according to the real-time speed. It is suitable for restarting after instantaneous power failure with large inertial loads or for smooth restarting of rotating equipment. Set accurate F2 group motor parameters to obtain better speed tracking and restart performance.
405
406 2: Pre-excitation start(Asynchronous motor)
407
408 Pre-excitation current and time share function codes with DC braking current and time.
409
410 If F1.06 startup DC braking/pre-excitation time, when it is set to 0, start from the starting frequency. When the setting is not 0, the pre-excitation is performed first and then the start is performed to improve the dynamic response speed.
411
412 (% class="table-bordered" %)
413 |(% rowspan="5" %)**F1.01**|(% colspan="2" %)Speed tracking mode|Default|0
414 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Start with the frequency of input power failure
415 |1|(% colspan="2" %)Start at zero speed
416 |2|(% colspan="2" %)Start at the maximum frequency F0.10
417 |3|(% colspan="2" %)Excitation search
418
419 Provide 4 speed tracking methods:
420
421 0: Tracking down from the frequency during a power outage, this method is usually used.
422
423 1: Start tracking upwards from 0 frequency, use in the case of a longer power outage and restart
424
425 2: Track down from the maximum frequency, generally used for generating loads
426
427 3: Output the excitation current to estimate the current frequency of the motor. After the estimation is successful, the inverter will start at the estimated frequency
428
429 (% class="table-bordered" %)
430 |(% rowspan="2" %)**F1.02**|Speed tracking coefficient|Default|20
431 |Setting Range|(% colspan="2" %)1~~100
432
433 In speed tracking restart mode, set the speed of speed tracking. The larger the parameter setting, the faster the tracking speed. But too large may cause unreliable tracking.
434
435 (% class="table-bordered" %)
436 |(% rowspan="2" %)**F1.03**|Starting frequency|Default|0.00Hz
437 |Setting Range|(% colspan="2" %)0.00Hz~~10.00Hz
438 |(% rowspan="2" %)**F1.04**|Hold time of starting frequency|Default|0.0s
439 |Setting Range|(% colspan="2" %)0.0s~~100.0s
440
441 To ensure the torque at startup, please set an appropriate startup frequency. In addition, in order to wait for the magnetic flux to be established when the motor starts, the starting frequency is maintained for a certain period of time and then the acceleration starts. The starting frequency value F1.03 is not limited by the lower limit frequency. If the given frequency (frequency source) is less than the starting frequency, the inverter cannot be started and is in the standby state. When switching between forward and reverse, the start frequency holding time has no effect. The hold time is not included in the acceleration time, but is included in the running time of the simple PLC.
442
443 (% class="table-bordered" %)
444 |(% rowspan="2" %)**F1.05**|DC braking current at start-up/Pre-excitation current|Default|0%
445 |Setting Range|(% colspan="2" %)0%~~100%
446 |(% rowspan="2" %)**F1.06**|DC braking time at start-up/Pre-excitation time|Default|0.0s
447 |Setting Range|(% colspan="2" %)0.0s~~100.0s
448
449 Starting DC braking is generally used to completely stop the motor before starting. Pre-excitation is generally used to establish a magnetic field before starting the motor to improve response speed.
450
451 If the start mode is direct start, the AC drive will first perform DC braking according to the set start DC braking current when starting, and then start running after the set start DC braking time. If the DC braking time is set to 0, it will start directly without DC braking. The greater the DC braking current, the greater the braking force. If the start mode is asynchronous motor pre-excitation start, the AC drive will first establish the magnetic field according to the set start pre-excitation current when starting, and then start running after the set start pre-excitation time. If the pre-excitation time is set to 0, it will start directly without pre-excitation. Start DC braking/pre-excitation current refers to the percentage relative to the AC drive rated current.
452
453 (% class="table-bordered" %)
454 |(% rowspan="4" %)**F1.07**|(% colspan="2" %)Acceleration & deceleration method|Default|0
455 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Linear acceleration/deceleration
456 |1|(% colspan="2" %)S-curve acceleration/deceleration A
457 |2|(% colspan="2" %)S-curve acceleration/deceleration B
458
459 Select the frequency change mode of the AC drive during the start and stop process.
460
461 0:Linear acceleration/deceleration
462
463 The output frequency increases or decreases linearly. The acceleration/deceleration time changes according to the set acceleration/deceleration time. VB series AC drive provides 4 kinds of acceleration and deceleration time. The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00~~F5.05).
464
465 1: S-curve acceleration/deceleration A
466
467 The output frequency increases or decreases according to the S curve. S curve is generally used in places where the start and stop process is relatively gentle, such as elevators and conveyor belts. Function codes F1.08 and F1.09 respectively define the time proportions of the start and end segments of S curve acceleration and deceleration
468
469 2: S-curve acceleration/deceleration B
470
471 In this acceleration and deceleration curve, the rated motor frequency fb is always the inflection point of the S curve. As shown in Figure 6-3. Generally used in the high-speed area above the rated frequency, where short-term acceleration and deceleration are required.
472
473 When the set frequency is above the rated frequency, the acceleration and deceleration time is:
474
475 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_840ad38ebbb1d9bd.gif]]
476
477 Among them, f is the set frequency; fb is the rated frequency of the motor;
478
479 T is the time to accelerate from 0 frequency to rated frequency fb.
480
481 (% class="table-bordered" %)
482 |(% rowspan="2" %)**F1.08**|Time proportion of S-curve start segment|Default|30.0%
483 |Setting Range|(% colspan="2" %)0.0%~~70.0%
484 |(% rowspan="2" %)**F1.09**|Time proportion of S-curve end segment|Default|30.0%
485 |Setting Range|(% colspan="2" %)0.0%~~70.0%
486
487 The function codes F1.08 and F1.09 respectively define the time proportions of the start section and the end section of S-curve acceleration/deceleration A, and both meet: F1.08 + F1.09 ≤ 100.0%.
488
489 In Figure 6.2-1, t1 is the parameter defined by parameter F1.08. During this period of time, the slope of the output frequency change gradually increases. t2 is the time defined by parameter F1.09, during which the slope of the output frequency change gradually changes to 0. During the time between t1 and t2, the slope of the output frequency change is fixed.
490
491 (% style="text-align:center" %)
492 [[image:图片1.png]]
493
494 Figure 6-2-1 S Schematic diagram of curve acceleration and deceleration A
495
496 (% style="text-align:center" %)
497 [[image:图片2.png]]
498
499 Figure 6-2-2 S Schematic diagram of curve acceleration and deceleration B
500
501 (% class="table-bordered" %)
502 |(% rowspan="3" %)**F1.10**|Stop mode|Default|0
503 |(% rowspan="2" %)Setting Range|0|Decelerate to stop 
504 |1|Free stopping
505
506 0: Decelerate to stop 
507
508 After the stop command is valid, the AC drive will reduce the output frequency according to the deceleration mode and the defined acceleration/deceleration time, and stop after the frequency drops to 0.
509
510 1: Free stopping
511
512 After the stop command is valid, the AC drive immediately terminates the output. The load stops freely according to mechanical inertia.
513
514 (% class="table-bordered" %)
515 |(% rowspan="2" %)**F1.11**|Trigging frequency of DC braking at stop|Default|0.00Hz
516 |Setting Range|(% colspan="2" %)0.00Hz~~max.frequency 
517 |(% rowspan="2" %)**F1.12**|Waiting time of DC braking at stop|Default|0.0s
518 |Setting Range|(% colspan="2" %)0.0s~~36.0s
519 |(% rowspan="2" %)**F1.13**|The current of DC braking at stop|Default|0%
520 |Setting Range|(% colspan="2" %)0%~~100%
521 |(% rowspan="2" %)**F1.14**|The time of DC braking at stop|Default|0.0s
522 |Setting Range|(% colspan="2" %)0.0s~~36.0s
523
524 Trigging frequency of DC braking at stop: During deceleration to stop, when the output frequency is less than this frequency, the DC braking process at stop will start.
525
526 Waiting time of DC braking at stop: When the output frequency is reduced to the start frequency of F1.11 stop DC braking during stop, the AC drive will stop output and start timing. After the delay time set by F1.12, DC will start again brake. It is used to prevent over-current faults caused by DC braking when the speed is high.
527
528 The current of DC braking at stop: refers to the added DC braking amount. The larger the value, the stronger the DC braking effect.
529
530 The time of DC braking at stop: the time added by the DC braking amount. When this value is 0, it means that there is no DC braking process and the AC drive will stop according to the set deceleration stop process.
531
532 (% style="text-align:center" %)
533 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_fcb1f31274fca2cb.png]]
534
535 Figure 6-2-3 Schematic diagram of DC braking at stop
536
537 (% class="table-bordered" %)
538 |(% rowspan="2" %)**F1.15**|Brake use rate|Default|100%
539 |Setting Range|(% colspan="2" %)0%~~100%
540
541 It is valid for inverters with built-in braking unit. The braking effect of the dynamic braking function can be adjusted.
542
543 (% class="table-bordered" %)
544 |(% rowspan="3" %)**F1.16**|Zero frequency output selection|Default|1
545 |(% rowspan="2" %)Setting Range|0|Open
546 |1|Closed
547
548 Setting whether the AC drive has output when running frequency is 0
549
550 = 3 F2 group motor parameters =
551
552 (% class="table-bordered" %)
553 |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
554 |(% rowspan="4" %)Setting Range|0|(% colspan="2" %)Ordinary asynchronous motor
555 |1|(% colspan="2" %)Variable frequency asynchronous motor
556 |2|(% colspan="2" %)Permanent magnet synchronous motor
557 |3|(% colspan="2" %)Single-phase asynchronous motor
558 |(% rowspan="2" %)**F2.01**|(% colspan="2" %)Motor rated power|Default|Model Dependent
559 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.1kW~~400.0kW
560 |(% rowspan="2" %)**F2.02**|(% colspan="2" %)Motor rated Voltage|Default|Model Dependent
561 |(% colspan="2" %)Setting Range|(% colspan="2" %)0V~~440V
562 |(% rowspan="2" %)**F2.03**|(% colspan="2" %)Motor rated current|Default|Model Dependent
563 |(% colspan="2" %)Setting Range|(% colspan="2" %)(((
564 0.01A~~655.35A(AC drive<=55kW)
565
566 0.1A~~6553.5A(AC drive >55kW)
567 )))
568 |(% rowspan="2" %)**F2.04**|(% colspan="2" %)Motor rated frequency|Default|Model Dependent
569 |(% colspan="2" %)Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequency F0.10
570 |(% rowspan="2" %)**F2.05**|(% colspan="2" %)Motor rated speed|Default|Model Dependent
571 |(% colspan="2" %)Setting Range|(% colspan="2" %)0rpm~~36000rpm
572
573 |** Caution**
574 |(((
575 ~1. Please set according to the nameplate parameters of the motor.
576
577 2. The excellent control performance of vector control requires accurate motor parameters, and accurate parameter identification comes from the correct setting of motor rated parameters.
578
579 3. In order to ensure the control performance, please configure the motor according to the standard adapted motor of the AC drive. If the power of the motor is too far from the standard adapted motor, the control performance of the inverter will be significantly reduced.
580 )))
581
582 (% class="table-bordered" %)
583 |(% rowspan="2" %)**F2.06**|Asynchronous motor stator resistance|Default|Model Dependent
584 |Setting Range|(% colspan="2" %)(((
585 0.001Ω~~65.535Ω(AC drive<=55kW)
586
587 0.0001Ω~~6.5535Ω(AC drive >55kW)
588 )))
589 |(% rowspan="2" %)**F2.07**|Asynchronous motor rotator resistance|Default|Model Dependent
590 |Setting Range|(% colspan="2" %)(((
591 0.001Ω~~65.535Ω(AC drive<=55kW)
592
593 0.0001Ω~~6.5535Ω(AC drive >55kW)
594 )))
595 |(% rowspan="2" %)**F2.08**|Asynchronous motor leakage inductance|Default|Model Dependent
596 |Setting Range|(% colspan="2" %)(((
597 0.01mH~~655.35mH(AC drive<=55kW)
598
599 0.001mH~~65.535mH(AC drive >55kW)
600 )))
601 |(% rowspan="2" %)**F2.09**|Asynchronous motor mutual inductance|Default|Model Dependent
602 |Setting Range|(% colspan="2" %)(((
603 0.1mH~~6553.5mH(AC drive<=55kW)
604
605 0.01mH~~655.35mH(AC drive >55kW)
606 )))
607 |(% rowspan="2" %)**F2.10**|Asynchronous motor no-load current|Default|Model Dependent
608 |Setting Range|(% colspan="2" %)(((
609 0.01A~~F2.03(AC drive<=55kW)
610
611 0.1A~~F2.03(AC drive >55kW)
612 )))
613
614 After the automatic tuning ends normally, the setting values of the asynchronous motor parameters (F2.06~~F2.10) are automatically updated.
615
616 After changing the motor rated power F2.01 each time, the AC drive will automatically restore the default standard motor parameters from F2.06 to F2.10. (Four-pole Y series asynchronous motor)
617
618 If it is impossible to tune the asynchronous motor in the site, you can manually input it with reference to the known parameters of similar motors.
619
620 (% class="table-bordered" %)
621 |(% rowspan="4" %)**F2.11**|(% colspan="2" %)Tuning selection|Default|0
622 |(% rowspan="3" %)Setting Range|0|(% colspan="2" %)0:No operation
623 |1|(% colspan="2" %)1:The asynchronous machine static tuning.
624 |2|(% colspan="2" %)2:The asynchronous machine is fully tuned
625
626 **✎Note**: Before tuning, you must set the correct motor type and rated parameters (F2.00-F2.05)
627
628 0: No operation, that is, tuning is prohibited.
629
630 1: The asynchronous motor is statically tuned, which is suitable for occasions where the motor and the load are not easily disconnected and cannot be rotated and tuned.
631
632 Action description: After setting the function code to 1, and pressing the RUN key to confirm, the AC drive will perform static tuning.
633
634 2: Complete tuning of asynchronous motor. In order to ensure the dynamic control performance of the AC drive, please select complete tuning, the motor must be disconnected from the load (no load) during rotary tuning.
635
636 After the complete tuning is selected, the AC drive will perform static tuning first. After the static tuning, the motor will accelerate to 80% of the rated frequency of the motor according to the acceleration time set by F0.18, and hold for a period of time, and then follow the deceleration time set by F0.19 Decelerate to zero speed and end the rotation tuning.
637
638 Action description: After setting the function code to 2, and pressing the RUN key to confirm, the AC drive will perform rotary tuning.
639
640 **Tuning instructions:**
641
642 When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
643
644 **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
645
646 (% class="table-bordered" %)
647 |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
648 |(% rowspan="2" %)Setting Range|1|(% colspan="2" %)General model (G) (constant torque load model)
649 |2|(% colspan="2" %)Pump model (P) (draught fan, water pump type load model)
650
651 This parameter is only for users to view the factory model and cannot be changed.
652
653 1: Suitable for constant torque load with specified rated parameters
654
655 2: Suitable for variable torque loads with specified rated parameters (fans, water pump loads)
656
657 (% class="table-bordered" %)
658 |(% rowspan="2" %)**F2.13**|Single-phase motor turns ratio|Default|140
659 |Setting Range|(% colspan="2" %)50~~200
660
661 The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
662
663 = 4 F3 group vector control parameters =
664
665 F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
666
667 (% class="table-bordered" %)
668 |(% rowspan="2" %)**F3.00**|Speed loop proportional gain 1|Default|30
669 |Setting range|(% colspan="2" %)1~~100
670 |(% rowspan="2" %)**F3.01**|Speed loop integral time 1|Default|0.50s
671 |Setting range|(% colspan="2" %)0.01s~~10.00s
672 |(% rowspan="2" %)**F3.02**|Switchover frequency 1|Default|5.00Hz
673 |Setting range|(% colspan="2" %)0.00~~F3.05
674 |(% rowspan="2" %)**F3.03**|Speed loop proportional gain 2|Default|20
675 |Setting range|(% colspan="2" %)0~~100
676 |(% rowspan="2" %)**F3.04**|Speed loop integral time 2|Default|1.00s
677 |Setting range|(% colspan="2" %)0.01s~~10.00s  
678 |(% rowspan="2" %)**F3.05**|Switchover frequency 2|Default|10.00Hz
679 |Setting range|(% colspan="2" %)F3.02~~Maximum frequency F0.10
680
681 F3.00 and F3.01 are PI adjustment parameters when the running frequency is lower than switchover frequency 1 (F3.02).
682
683 F3.03 and F4.04 are PI adjustment parameters for the frequency band between the operating frequency greater than the switchover frequency 2.
684
685 The PI parameters in the frequency band between switchover frequency 1 and switchover frequency 2 are linear switching of two sets of PI parameters, as shown in the following figure:
686
687 (% style="text-align:center" %)
688 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3a0fe23ce96d4424.png]]
689
690 Figure 6-4-1 Schematic diagram of PI parameters
691
692 By setting the proportional coefficient and integral time of the speed regulator, the speed dynamic response characteristics of the vector control can be adjusted. Increasing the proportional gain and reducing the integral time can speed up the dynamic response of the speed loop. If the proportional gain is too large or the integral time is too small, the system may oscillate.
693
694 Suggested adjustment method:
695
696 If the factory parameters cannot meet the requirements, fine-tune the parameters based on the factory value: first increase the proportional gain to ensure that the system does not oscillate; then reduce the integration time to make the system have faster response characteristics and smaller overshoot.
697
698 Note: Improper setting of PI parameters may result in excessive speed overshoot. Even when the overshoot falls back, an overvoltage fault occurs.
699
700 (% class="table-bordered" %)
701 |(% rowspan="2" %)**F3.06**|Slip compensation coefficient of vector control|Default|100%
702 |Setting range|(% colspan="2" %)50%~~200%
703
704 In the speed sensorless vector control mode, this parameter is used to adjust the speed stability accuracy of the motor. When the speed of the motor is heavy, increase this parameter, otherwise decrease this parameter.
705
706 (% class="table-bordered" %)
707 |(% rowspan="2" %)**F3.07**|Speed loop filter time constant.|Default|0.000s
708 |Setting range|(% colspan="2" %)0.000s~~0.100s  
709
710 In vector control mode, the output of the speed loop regulator is the torque current command, and this parameter is used to filter the torque command. Generally, this parameter does not need to be adjusted. When the speed fluctuates greatly, the filter time can be appropriately increased; if the motor oscillates, the parameter should be appropriately reduced.
711
712 The speed loop filter time constant is small, the output torque of the AC drive may vary greatly, but the response is fast.
713
714 (% class="table-bordered" %)
715 |(% rowspan="2" %)**F3.08**|Speed control torque upper limit|Default|150.0%
716 |Setting range|(% colspan="2" %)0.0%~~200.0% 
717
718 In speed control mode, the maximum output torque of the inverter is controlled by F3.08.
719
720 (% class="table-bordered" %)
721 |(% rowspan="3" %)**F3.09**|(% colspan="2" %)Speed/torque control|Default|0
722 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Speed Control
723 |1|(% colspan="2" %)Torque Control
724
725 To select whether the AC drive control mode is speed control or torque control, this function code needs to be judged together with terminal function 29: torque control prohibition and 46: speed control/torque control switching.
726
727 When the torque control prohibition is valid, the AC drive is speed control.
728
729 When the torque control prohibition is invalid, if the speed control/torque control switch is invalid, the control mode is determined by F3.09; if the speed control/torque control switch is valid, the value of F3.09 is reversed.
730
731 When it is torque control, the AC drive running frequency is given by F3.12, F3.13, and the acceleration/deceleration time is given by F3.14, F3.15.
732
733 (% class="table-bordered" %)
734 |(% rowspan="10" %)**F3.10**|(% colspan="2" %)Torque upper limit source in torque control|Default|0
735 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)Digital setting(F3.11)
736 |1|(% colspan="2" %)AI1
737 |2|(% colspan="2" %)AI2
738 |3|(% colspan="2" %)Reserved
739 |4|(% colspan="2" %)Reserved
740 |5|(% colspan="2" %)Communication setting
741 |6|(% colspan="2" %)MIN(AI1,AI2)
742 |7|(% colspan="2" %)MAX(AI1,AI2)
743 |(% colspan="3" %)The full scale of options 1~~7 corresponds to F3.11
744 |(% rowspan="2" %)**F3.11**|(% colspan="2" %)Digital setting of torque upper limit in torque control|Default|150.0%
745 |(% colspan="2" %)Setting range|(% colspan="2" %)-200.0%~~200.0%
746
747 F3.10 is used to select the torque upper limit setting source in the torque control mode. When setting by analog, 100% of analog input setting corresponds to F3.11, and 100% of setting corresponds to AC drive matching motor rated torque.
748
749 (% class="table-bordered" %)
750 |(% rowspan="2" %)**F3.12**|Forward maximum frequency of torque control|Default|50.00Hz
751 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10)
752 |(% rowspan="2" %)**F3.13**|Reverse maximum frequency of torque control|Default|50.00Hz
753 |Setting range|(% colspan="2" %)0.00Hz~~Maximum Frequency(F0.10) 
754
755 Set the maximum forward or reverse running frequency of the AC drive in torque control mode.
756
757 (% class="table-bordered" %)
758 |(% rowspan="2" %)**F3.14**|Acceleration time of torque control|Default|0.00s
759 |Setting range|(% colspan="2" %)0.00s~~65000s
760 |(% rowspan="2" %)**F3.15**|Deceleration time of torque control|Default|0.00s
761 |Setting range|(% colspan="2" %)0.00s~~65000s 
762
763 Set the frequency acceleration/deceleration time of the AC drive in torque control mode.
764
765 (% class="table-bordered" %)
766 |(% rowspan="2" %)**F3.16**|Torque stiffness coefficient|Default|100.00%
767 |Setting range|(% colspan="2" %)10.0%~~120.0% 
768
769 In the torque control mode, when the set torque is small, this coefficient can be appropriately reduced to obtain a stable control effect, otherwise, the coefficient can be appropriately increased to obtain a stable control effect.
770
771 (% class="table-bordered" %)
772 |(% rowspan="2" %)**F3.17**|M axis current loop proportional gain|Default|2000
773 |Setting range|(% colspan="2" %)0~~60000 
774 |(% rowspan="2" %)**F3.18**|M axis current loop integral gain|Default|1300
775 |Setting range|(% colspan="2" %)0~~60000 
776 |(% rowspan="2" %)**F3.19**|T axis current loop proportional gain|Default|2000
777 |Setting range|(% colspan="2" %)0~~60000  
778 |(% rowspan="2" %)**F3.20**|T axis current loop integral gain|Default|1300
779 |Setting range|(% colspan="2" %)0~~60000  
780
781 The current loop control parameters in the MT coordinate system and the synchronous motor dq coordinate system will be automatically identified after complete parameter identification, and generally do not need to be modified.
782
783 The bandwidth of the current loop directly determines the response speed of the electromagnetic torque. If the adjustment parameters are too strong, the current loop will be out of adjustment, causing the entire control loop to oscillate; when the current oscillates and torque fluctuations are large, you can manually adjust this group of parameters to improve the effect .
784
785 (% class="table-bordered" %)
786 |(% rowspan="3" %)**F3.21**|(% colspan="2" %)The speed loop integral separation|Default|0
787 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
788 |1|(% colspan="2" %)Valid
789
790 (% class="table-bordered" %)
791 |(% rowspan="2" %)**F3.24**|Torque control static friction compensation coefficient|Default|100
792 |Setting range|(% colspan="2" %)100~~300
793
794 (% class="table-bordered" %)
795 |(% rowspan="2" %)**F3.25**|Torque mode friction compensation time|Default|0
796 |Setting range|(% colspan="2" %)0~~100s
797
798 During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
799
800 = 5 F4 group v/f control parameters =
801
802 This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
803
804 V/F control is suitable for general loads such as fans and water pumps, or applications where one AC drive has multiple motors, or the power of the AC drive is one level lower or two levels higher than the motor power.
805
806 (% class="table-bordered" %)
807 |(% rowspan="7" %)**F4.00**|(% colspan="2" %)V/F curve setting|Default|0
808 |(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Linear V/F
809 |1|(% colspan="2" %)Multi-point V/F
810 |2|(% colspan="2" %)Square V/F
811 |3~~9|(% colspan="2" %)Reserved
812 |10|(% colspan="2" %)V/F complete separation
813 |11|(% colspan="2" %)V/F half separation
814
815 For fans and pumps, you can choose square V/F control.
816
817 Common VF control method
818
819 0: Straight line V/F curve. Suitable for ordinary constant torque load.
820
821 1: Multi-point V/F curve. Suitable for special loads such as dehydrators and centrifuges.
822
823 2: Square V/F curve. Suitable for centrifugal loads such as fans and pumps.
824
825 VF separation control method
826
827 10: VF complete separation mode. At this time, the output voltage is set separately according to the setting mode of F4.13 (VF separation voltage source).
828
829 11: VF semi-separated mode.
830
831 In this case, V and F are proportional, and the voltage source is only used to adjust the slope of V/F. At this time, the relationship between V and F is related to the rated voltage and rated frequency of the motor set in group F2. If the voltage source input is X (X is a value of 0~~100%), then: V/F=2 * X * (motor rated voltage)/(motor rated frequency)
832
833 (% class="table-bordered" %)
834 |(% rowspan="2" %)**F4.01**|Torque boost|Default|Model dependent
835 |Setting Range|(% colspan="2" %)0.0%~~30%  
836 |(% rowspan="2" %)**F4.02**|Cut-off frequency of torque boost|Default|50.00Hz
837 |Setting Range|(% colspan="2" %)0.00Hz~~Maximum frequencyF0.10
838
839 In order to compensate the low-frequency torque characteristics of V/F control, some boost compensation is made for the AC drive output voltage at low frequency.
840
841 If the torque boost is set too large, the motor will easily overheat and the AC drive will easily overcurrent. Generally, the torque boost should not exceed 8.0%. Effective adjustment of this parameter can effectively avoid overcurrent during starting. For larger loads, it is recommended to increase this parameter, and reduce this parameter setting when the load is lighter. When the torque boost is set to 0.0, the AC drive is automatic torque boost. Torque boost torque cut-off frequency: below this frequency, the torque boost torque is valid, if the set frequency is exceeded, the torque boost is invalid, as shown in Figure 6.6.
842
843 (((
844 Output frequency
845
846 (% style="text-align:center" %)
847 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a72975cd3987dca.png]]
848 )))
849
850 Figure 6-5-1 Schematic diagram of manual torque boost
851
852 (% class="table-bordered" %)
853 |(% rowspan="2" %)**F4.03**|Multipoint V/F frequency 1|Default|3.00Hz
854 |Setting Range|(% colspan="2" %)0.00Hz~~F4.05 
855 |(% rowspan="2" %)**F4.04**|Multipoint V/F voltage 1|Default|10.0%
856 |Setting Range|(% colspan="2" %)0.0%~~100.0%
857 |(% rowspan="2" %)**F4.05**|Multipoint V/F frequency 2|Default|5.00Hz
858 |Setting Range|(% colspan="2" %)F4.03~~F4.07 
859 |(% rowspan="2" %)**F4.06**|Multipoint V/F voltage 2|Default|15.0%
860 |Setting Range|(% colspan="2" %)0.0%~~100.0%
861 |(% rowspan="2" %)**F4.07**|Multipoint V/F frequency 3|Default|8.00Hz
862 |Setting Range|(% colspan="2" %)F4.05~~Motor rated frequency(F2.04)
863 |(% rowspan="2" %)**F4.08**|Multipoint V/F voltage 3|Default|22.0%
864 |Setting Range|(% colspan="2" %)0.0%~~100.0%
865
866 Six parameters F4.03~~F4.08 define multi-segment V/F curve. The set value of the V/F curve is usually set according to the load characteristics of the motor. Note: V1<V2<V3, F1<F2<F3. Setting the voltage too high at low frequency may cause the motor to overheat or even burn, and the AC drive may over-current stall or over-current
867
868 protection.
869
870 (% style="text-align:center" %)
871 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_f550fcd15ecbb3b8.png]]
872
873 Figure 6-5-2 Schematic diagram of V/F curve setting
874
875 (% class="table-bordered" %)
876 |(% rowspan="2" %)**F4.09**|V/F slip compensation|Default|0.0%
877 |Setting Range|(% colspan="2" %)0%~~200.0%
878
879 Effective for V/F control. Setting this parameter can compensate for the slip caused by the load during V/F control, and reduce the change in motor speed with load changes during V/F control. Generally 100% corresponds to the rated slip when the motor is loaded with rated load. The slip coefficient can be adjusted according to the following principles: when the load is rated load and the slip compensation coefficient is set to 100%, the speed of the motor with the inverter is basically close to the given speed.
880
881 (% class="table-bordered" %)
882 |(% rowspan="2" %)**F4.10**|V/F over-excitation gain|Default|0
883 |Setting Range|(% colspan="2" %)0~~200
884
885 The function of the VF overexcitation gain function is to suppress the rise of the bus voltage during the deceleration of the AC drive, and to prevent the bus voltage from exceeding the overvoltage protection limit value and causing an overvoltage fault. The greater the overexcitation gain, the stronger the suppression effect. The setting instructions are as follows:
886
887 ~1. Generally, the overexcitation gain should be set to 0 when the inertia is small, and the overexcitation gain should be appropriately increased when the inertia is large.
888
889 2. If there is a braking resistor, please set the overexcitation gain to 0
890
891 (% class="table-bordered" %)
892 |(% rowspan="2" %)**F4.11**|V/F oscillation suppression gain|Default|Model dependent
893 |Setting Range|(% colspan="2" %)0~~100
894
895 Please select this gain as 0 when the motor has no oscillation. Only when the motor obviously oscillates and cannot run normally, increase the gain appropriately. The larger the gain, the more obvious the suppression of oscillation. When using the oscillation suppression function, it is required that the motor rated current and no-load current parameter settings have little deviation from the actual values. The method of selecting the gain is to choose as small as possible under the premise of effectively suppressing the oscillation, so as not to have too much influence on the VF operation.
896
897 (% class="table-bordered" %)
898 |(% rowspan="11" %)**F4.12**|(% colspan="2" %)Voltage source for V/F separation|Default|0
899 |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting(F4.14) 
900 |1|(% colspan="2" %)AI1
901 |2|(% colspan="2" %)AI2
902 |3|(% colspan="2" %)Reserved
903 |4|(% colspan="2" %)Reserved
904 |5|(% colspan="2" %)Multi-speed instructions
905 |6|(% colspan="2" %)Simple PLC
906 |7|(% colspan="2" %)PID
907 |8|(% colspan="2" %)Communication setting
908 |(% colspan="3" %)(100% corresponds to the rated motor voltage)
909
910 Define the voltage source for VF separation. The output voltage can come from digital setting (F4.13), or from analog input channel, multi-speed command, PLC, PID or communication setting. When using non-digital setting of output voltage, 100% of the input setting corresponds to the rated voltage of the motor, and the absolute value of the input setting is taken as the effective setting value.
911
912 0: Digital setting (F4.13); The voltage is directly set through F4.13.
913
914 1: AI1 2: AI2 voltage is determined by analog input terminal, AI input 0~~100% corresponds to output voltage 0V~~rated voltage of motor.
915
916 4: Reserved
917
918 5: Multi-speed instructions
919
920 When the voltage source is multi-speed, you need to set the F4 group "input terminal" and FC group "multi-speed and PLC" parameters to determine the corresponding relationship between the given signal and the given voltage (100% corresponds to the rated motor voltage).
921
922 6: Simple PLC
923
924 When the voltage source is a simple PLC, you need to set the FC group "multi-speed and PLC" parameters to determine the given output voltage (100% corresponds to the rated voltage of the motor).
925
926 7: PID
927
928 Generate output voltage according to PID closed loop. For details, please refer to the introduction of FA group PID.
929
930 8: Communication setting
931
932 Refers to the voltage given by the host computer through communication (100% corresponds to the rated voltage of the motor).
933
934 (% class="table-bordered" %)
935 |(% rowspan="2" %)**F4.13**|Voltage digital setting for V/F separation|Default|0V
936 |Setting Range|(% colspan="2" %)0V~~F2.02
937
938 When the voltage source is digital setting, this value is directly used as the target value of the output voltage.
939
940 (% class="table-bordered" %)
941 |(% rowspan="2" %)**F4.14**|Voltage rise time of separation|Default|0.0s
942 |Setting Range|(% colspan="2" %)0.0s~~1000.0s
943
944 VF separation rise time refers to the time required for the output voltage to change from 0V to the rated voltage of the motor.
945
946 As Figure 6-5-3:
947
948 (((
949 (% style="text-align:center" %)
950 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d312ba31a6b637aa.png]]
951 )))
952
953 Figure 6-5-3 Schematic diagram of V/F separation
954
955 (% class="table-bordered" %)
956 |(% rowspan="2" %)**F4.16**|Auto voltage regulation (AVR)|Default|1
957 |Setting Range|(% colspan="2" %)(((
958 0:Invalid
959
960 1:Only valid during deceleration
961
962 2:Only valid during acceleration
963
964 3:Valid
965 )))
966
967 According to the actual use, select the situation where the AVR function is enabled.
968
969 = 6 F5 group input terminals =
970
971 The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
972
973 (% class="table-bordered" %)
974 |**F5.00**|DI1 terminal function selection|Default|1(Forward Running)
975 |**F5.01**|DI2 terminal function selection|Default|2(Reverse Running)
976 |**F5.02**|DI3 terminal function selection|Default|9(Reset Faults)
977 |**F5.03**|DI4 terminal function selection|Default|12(Multi-speed instruction terminal 1)
978 |**F5.04**|DI5 terminal function selection|Default|13(Multi-speed instruction terminal 2)
979 |**F5.05**|DI6 terminal function selection|Default|0
980 |**F5.06~~F5.09**|(% colspan="3" %)Reserved
981 |**F5.10**|VDI terminal function selection|Default|0
982
983 These parameters are used to set the corresponding function of the digital multi-function input terminals
984
985 (% class="table-bordered" %)
986 |(% style="width:121px" %)**Set Value**|(% style="width:540px" %)**Function**|(% style="width:829px" %)**Description**
987 |(% style="width:121px" %)0|(% style="width:540px" %)No function|(% style="width:829px" %)The AC drive will not operate even if a signal is input. The unused terminals can be set to have no function to prevent malfunction.
988 |(% style="width:121px" %)1|(% style="width:540px" %)Forward Running(FWD)|(% rowspan="2" style="width:829px" %)Control the forward and reverse rotation of the inverter through external terminals.
989 |(% style="width:121px" %)2|(% style="width:540px" %)Reverse Running(REV)
990 |(% style="width:121px" %)3|(% style="width:540px" %)Three-wire operation control|(% style="width:829px" %)Use this terminal to determine that the inverter operating mode is three-wire control mode. For details, please refer to F5.16 three-wire control mode function code introduction.
991 |(% style="width:121px" %)4|(% style="width:540px" %)Forward point movement (FJOG)|(% rowspan="2" style="width:829px" %)FJOG is jog forward running, RJOG is jog reverse running. Refer to the detailed description of F8.00, F8.01, F8.02 function codes for frequency and jog acceleration/deceleration time during jog operation.
992 |(% style="width:121px" %)5|(% style="width:540px" %)Reverse point movement(RJOG)
993 |(% style="width:121px" %)6|(% style="width:540px" %)Terminal UP|(% rowspan="2" style="width:829px" %)When the frequency is given by the external terminal, modify the frequency increase command and decrease command. When the frequency source is set to digital setting, the set frequency can be adjusted up and down.
994 |(% style="width:121px" %)7|(% style="width:540px" %)Terminal DOWN
995 |(% style="width:121px" %)8|(% style="width:540px" %)Free stopping|(% style="width:829px" %)(((
996 The inverter blocks the output, and the motor stopping process is not controlled by the inverter. For large inertia loads and when there is no requirement for stopping time, the method is often adopted.
997
998 This method has the same meaning as the free stop described in F1.10.
999 )))
1000 |(% style="width:121px" %)9|(% style="width:540px" %)Reset Faults|(% style="width:829px" %)External fault reset function. It has the same function as the RESET key on the keyboard. Use this function to realize remote fault reset.
1001 |(% style="width:121px" %)10|(% style="width:540px" %)Run pause|(% style="width:829px" %)The inverter decelerates to stop, but all operating parameters are in the memory state. Such as PLC parameters, swing frequency parameters, PID parameters. After this signal disappears, the inverter will resume running to the state before stopping.
1002 |(% style="width:121px" %)11|(% style="width:540px" %)External faults normally open input|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1003 |(% style="width:121px" %)12|(% style="width:540px" %)Multi-speed instruction terminal 1|(% rowspan="4" style="width:829px" %)(((
1004 A total of 16-speed settings can be achieved through the digital state combination of these four terminals.
1005
1006 See attached sheet 1 for detailed combination.
1007 )))
1008 |(% style="width:121px" %)13|(% style="width:540px" %)Multi-speed instruction terminal 2
1009 |(% style="width:121px" %)14|(% style="width:540px" %)Multi-speed instruction terminal 3
1010 |(% style="width:121px" %)15|(% style="width:540px" %)Multi-speed instruction terminal 4
1011 |(% style="width:121px" %)16|(% style="width:540px" %)Terminal 1 for acceleration/deceleration time selection|(% rowspan="2" style="width:829px" %)Four types of acceleration and deceleration time can be selected through the combination of the digital states of these two terminals. See attached sheet 2 for detailed combination.
1012 |(% style="width:121px" %)17|(% style="width:540px" %)Terminal 2 for acceleration/deceleration time selection
1013 |(% style="width:121px" %)18|(% style="width:540px" %)Frequency source switchover(terminal and keypad)|(% style="width:829px" %)(((
1014 When the frequency source selection (F0.07 ones place) is set to 2, the main frequency source X and auxiliary frequency source Y are switched through this terminal.
1015
1016 When the frequency source selection (F0.07 ones place) is set to 3, this terminal is used to switch between the main frequency source X and the main and auxiliary calculation results.
1017
1018 When the frequency source selection (F0.07 ones place) is set to 4, use this terminal to switch between the auxiliary frequency source Y and the main and auxiliary calculation results
1019 )))
1020 |(% style="width:121px" %)19|(% style="width:540px" %)UP/DOWN setting clear(terminal and keypad)|(% style="width:829px" %)When the frequency source is a digital frequency setting, this terminal can be used to clear the frequency value changed by UP/DOWN and restore the reference frequency to the value set by F0.08.
1021 |(% style="width:121px" %)20|(% style="width:540px" %)Command source switchover terminal|(% style="width:829px" %)(((
1022 When the command source (F0.01) is set to 1, this terminal can be used to switch between terminal control and keyboard control.
1023
1024 When the command source (F0.01) is set to 2, the communication control and keyboard control can be switched through this terminal.
1025 )))
1026 |(% style="width:121px" %)21|(% style="width:540px" %)Acceleration/deceleration prohibited|(% style="width:829px" %)Ensure that the inverter is not affected by external signals (except for the stop command) and maintain the current output frequency.
1027 |(% style="width:121px" %)22|(% style="width:540px" %)PID pause|(% style="width:829px" %)PID is temporarily invalid and the inverter maintains the current frequency output.
1028 |(% style="width:121px" %)23|(% style="width:540px" %)PLC status reset|(% style="width:829px" %)The PLC pauses during execution, and can be restored to the initial state of the simple PLC through this terminal when it is running again.
1029 |(% style="width:121px" %)24|(% style="width:540px" %)Swing pause|(% style="width:829px" %)The inverter outputs at the central frequency. The swing frequency is paused.
1030 |(% style="width:121px" %)25|(% style="width:540px" %)Counter input|(% style="width:829px" %)The input terminal for counting pulses.
1031 |(% style="width:121px" %)26|(% style="width:540px" %)Counter reset|(% style="width:829px" %)Clear the counter status.
1032 |(% style="width:121px" %)27|(% style="width:540px" %)Length count input|(% style="width:829px" %)The input terminal for length count.
1033 |(% style="width:121px" %)28|(% style="width:540px" %)Length reset|(% style="width:829px" %)Clear the length.
1034 |(% style="width:121px" %)29|(% style="width:540px" %)Torque control prohibited|(% style="width:829px" %)The inverter is prohibited from torque control mode.
1035 |(% style="width:121px" %)30|(% style="width:540px" %)Reserved|(% style="width:829px" %)Reserved
1036 |(% style="width:121px" %)31|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1037 |(% style="width:121px" %)32|(% style="width:540px" %)Immediate DC braking|(% style="width:829px" %)When this terminal is valid, the inverter directly switches to the DC braking state
1038 |(% style="width:121px" %)33|(% style="width:540px" %)External faults normally closed input|(% style="width:829px" %)When the external fault signal is sent to the inverter, the inverter reports a fault and stops.
1039 |(% style="width:121px" %)34|(% style="width:540px" %)Frequency setting effect terminal|(% style="width:829px" %)If the function of this terminal is set, when the frequency is modified, the effective time of the modification is controlled by this terminal
1040 |(% style="width:121px" %)35|(% style="width:540px" %)Reverse PID action direction|(% style="width:829px" %)If this terminal is valid, the PID action direction is opposite to the direction set by F9.03
1041 |(% style="width:121px" %)36|(% style="width:540px" %)External stop terminal 1|(% style="width:829px" %)During keyboard control, this terminal can be used to stop, which is equivalent to the STOP key on the keypad
1042 |(% style="width:121px" %)37|(% style="width:540px" %)Command source switchover terminal 1|(% style="width:829px" %)Used to switch between terminal control and communication control. When this terminal is valid if F0.02 is set to terminal control, it will switch to communication control; if F0.02 is set to communication control, it will switch to terminal control.
1043 |(% style="width:121px" %)38|(% style="width:540px" %)PID integral pause|(% style="width:829px" %)If this terminal is valid, the PID integral function is suspended, but the proportional regulation and differential regulation still function.
1044 |(% style="width:121px" %)39|(% style="width:540px" %)Frequency source X and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source X is replaced by the preset frequency (F0.08)
1045 |(% style="width:121px" %)40|(% style="width:540px" %)Frequency source Y and preset frequency switchover terminals|(% style="width:829px" %)If this terminal is valid, the frequency source Y is replaced by the preset frequency (F0.08)
1046 |(% style="width:121px" %)41|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1047 |(% style="width:121px" %)42|(% style="width:540px" %)Reserved|(% style="width:829px" %)
1048 |(% style="width:121px" %)43|(% style="width:540px" %)PID parameter switchover terminal|(% style="width:829px" %)When F9.18 (PID parameter switching condition) is DI terminal, when this terminal is valid, PID uses F9.15~~F9.17 parameters. When the terminal is invalid, use F9.05~~F9.07 parameters
1049 |(% style="width:121px" %)44|(% style="width:540px" %)User-defined fault 1|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1050 |(% style="width:121px" %)45|(% style="width:540px" %)User-defined fault 2|(% style="width:829px" %)After the external fault signal is sent to the inverter, the inverter reports a fault and handles it according to the fault protection action mode (FA.13~~FA.16).
1051 |(% style="width:121px" %)46|(% style="width:540px" %)Speed control/torque control switchover|(% style="width:829px" %)Switch the inverter to run in torque control or speed control mode. If this terminal is invalid, it runs in the mode defined by F3.09 (speed/torque control mode), and if it is valid, it switches to the other mode.
1052 |(% style="width:121px" %)47|(% style="width:540px" %)Emergency stop|(% style="width:829px" %)If this terminal is valid, the inverter will stop at the fastest speed
1053 |(% style="width:121px" %)48|(% style="width:540px" %)External stopping terminal 22|(% style="width:829px" %)Under any control mode, this terminal can be used to stop, and stop according to deceleration time 4
1054 |(% style="width:121px" %)49|(% style="width:540px" %)Deceleration DC braking|(% style="width:829px" %)If this terminal is valid, the inverter will first decelerate to the start frequency of stop DC braking and then switch to DC braking state
1055 |(% style="width:121px" %)50|(% style="width:540px" %)Clear the current running time|(% style="width:829px" %)If this terminal is valid, the inverter's current running timing time will be cleared, and this function will be used for timing running (F8.42).
1056
1057 Attached sheet: Multi-speed function description
1058
1059 (% class="table-bordered" %)
1060 |**K4**|**K3**|**K2**|**K1**|**Set Frequency**|**Related Parameter**
1061 |OFF|OFF|OFF|OFF|Multistage Speed0|FD.00
1062 |OFF|OFF|OFF|ON|Multistage Speed1|FD.01
1063 |OFF|OFF|ON|OFF|Multistage Speed2|FD.02
1064 |OFF|OFF|ON|ON|Multistage Speed3|FD.03
1065 |OFF|ON|OFF|OFF|Multistage Speed4|FD.04
1066 |OFF|ON|OFF|ON|Multistage Speed5|FD.05
1067 |OFF|ON|ON|OFF|Multistage Speed6|FD.06
1068 |OFF|ON|ON|ON|Multistage Speed7|FD.07
1069 |ON|OFF|OFF|OFF|Multistage Speed8|FD.08
1070 |ON|OFF|OFF|ON|Multistage Speed9|FD.09
1071 |ON|OFF|ON|OFF|Multistage Speed10|FD.10
1072 |ON|OFF|ON|ON|Multistage Speed11|FD.11
1073 |ON|ON|OFF|OFF|Multistage Speed12|FD.12
1074 |ON|ON|OFF|ON|Multistage Speed13|FD.13
1075 |ON|ON|ON|OFF|Multistage Speed14|FD.14
1076 |ON|ON|ON|ON|Multistage Speed15|FD.15
1077
1078 Attached sheet: description of acceleration and deceleration time selection
1079
1080 (% class="table-bordered" %)
1081 |**Terminal 2**|**Terminal 1**|**Selection of acceleration/deceleration time**|**Related Parameter**
1082 |OFF|OFF|Acceleration/Deceleration Time1|F0.18. F0.19
1083 |OFF|ON|Acceleration/Deceleration Time2|F8.03. F8.04
1084 |ON|OFF|Acceleration/Deceleration Time3|F8.05. F8.06
1085 |ON|ON|Acceleration/Deceleration Time4|F8.07. F8.08
1086
1087 (% class="table-bordered" %)
1088 |(% rowspan="2" %)**F5.15**|DI filter time|Default|0.010s
1089 |Setting range|(% colspan="2" %)0.000s~~1.000s 
1090
1091 Set the sensitivity of the DI terminal. If the digital input terminal is susceptible to interference and cause malfunction, you can increase this parameter to increase the anti-interference ability, but cause the sensitivity of the DI terminal to decrease.
1092
1093 (% class="table-bordered" %)
1094 |(% rowspan="5" %)**F5.16**|(% colspan="2" %)Terminal command mode|Default|0
1095 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)Two-line mode 1
1096 |1|(% colspan="2" %)Two-line mode 2
1097 |2|(% colspan="2" %)Three-line mode 1
1098 |3|(% colspan="2" %)Three-line mode 2
1099
1100 This parameter defines four different ways to control the operation of the inverter through external terminals.
1101
1102 0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1103
1104 1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV.
1105
1106 2: Three-line mode 1: This mode Din is the enable terminal, and the direction is controlled by FWD and REV respectively.
1107
1108 But the pulse is valid, it must be completed by disconnecting the Din terminal signal when stopping.
1109
1110 Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1111
1112 3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1113
1114 Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1115
1116 (% class="table-bordered" %)
1117 |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1118 |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
1119
1120 Frequency change rate while using terminal UP/DOWN function
1121
1122 (% class="table-bordered" %)
1123 |(% rowspan="2" %)**F5.18**|AI1 minimum input|Default|0.00V
1124 |Setting range|(% colspan="2" %)0.00V~~F5.15  
1125 |(% rowspan="2" %)**F5.19**|Percentage rate of AI1 minimum input|Default|0.0%
1126 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1127 |(% rowspan="2" %)**F5.20**|AI1 maximum input|Default|10.00V
1128 |Setting range|(% colspan="2" %)F5.18~~10.00V  
1129 |(% rowspan="2" %)**F5.21**|Percentage rate of AI1 maximum input|Default|100.0%
1130 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1131 |(% rowspan="2" %)**F5.22**|AI1 filter time|Default|0.10s
1132 |Setting range|(% colspan="2" %)0.00s~~10.00s
1133
1134 The above function code defines the relationship between the analog input voltage and the set value represented by the analog input. When the analog input voltage exceeds the set maximum input range, the other part will be calculated as the maximum input. When the analog input voltage exceeds the set minimum input The range, the outside part will be calculated based on the AI minimum input.
1135
1136 When analog input is current input, 1mA current is equivalent to 0.5V voltage. In different applications, the nominal value corresponding to 100% of the analog setting is different. For details, please refer to the description of each application part.
1137
1138 The following figures illustrate several settings:
1139
1140 (% style="text-align:center" %)
1141 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_18e4cbe6e1292696.png]]
1142
1143 Figure 6-6-1 Correspondence between analog reference and setting
1144
1145 (% class="table-bordered" %)
1146 |(% rowspan="2" %)**F5.23**|AI2 minimum input|Default|0.00V
1147 |Setting range|(% colspan="2" %)0.00V~~F5.25  
1148 |(% rowspan="2" %)**F5.24**|Percentage rate of AI2 minimum input|Default|0.0%
1149 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1150 |(% rowspan="2" %)**F5.25**|AI2 maximum input|Default|10.00V
1151 |Setting range|(% colspan="2" %)F5.23~~10.00V  
1152 |(% rowspan="2" %)**F5.26**|Percentage rate of AI2 maximum input|Default|100.0%
1153 |Setting range|(% colspan="2" %)-100.00%~~100.0%
1154 |(% rowspan="2" %)**F5.27**|AI2 filter time|Default|0.10s
1155 |Setting range|(% colspan="2" %)0.00s~~10.00s
1156
1157 The function of AI2 is similar to the setting method of AI1.
1158
1159 (% class="table-bordered" %)
1160 |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1161 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1162 |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
1163 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1164 |(% rowspan="2" %)**F5.35**|DI2 enable delay time|Default|0.0s
1165 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1166 |(% rowspan="2" %)**F5.36**|DI2 disable delay time|Default|0.0s
1167 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1168
1169 Set the delay time from DI terminal status change to inverter response.
1170
1171 Currently only DI1\DI2 has the function of setting the delay time.
1172
1173 (% class="table-bordered" %)
1174 |(% rowspan="8" %)**F5.37**|(% colspan="2" %)DI valid mode selection 1|Default|00000
1175 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI1 terminal valid state setting
1176 |0|(% colspan="2" %)High level
1177 |1|(% colspan="2" %)Low Level
1178 |Tens Place|(% colspan="2" %)DI2 terminal valid state setting(0~~1,as above)
1179 |Hundreds Place|(% colspan="2" %)DI3 terminal valid state setting(0~~1,as above)
1180 |Thousands Place|(% colspan="2" %)DI4 terminal valid state setting(0~~1,as above)
1181 |Ten Thousands Place|(% colspan="2" %)DI5 terminal valid state setting(0~~1,as above)
1182 |(% rowspan="8" %)**F5.38**|(% colspan="2" %)DI valid mode selection 2|Default|00000
1183 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)DI6 terminal valid state setting
1184 |0|(% colspan="2" %)High level
1185 |1|(% colspan="2" %)Low Level
1186 |Tens Place|(% colspan="2" %)Reserved
1187 |Hundreds Place|(% colspan="2" %)Reserved
1188 |Thousands Place|(% colspan="2" %)Reserved
1189 |Ten Thousands Place|(% colspan="2" %)Reserved
1190
1191 Define the effective state setting of the input terminal.
1192
1193 High level:The connection between DI terminal and COM is valid, while disconnection is invalid.
1194
1195 Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1196
1197 = 7 F6 group output terminals =
1198
1199 The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1200
1201 (% class="table-bordered" %)
1202 |(% rowspan="3" %)**F6.00**|(% colspan="2" %)FM terminal output mode|Default|1
1203 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Pulse Output(FMP)(Reserved)  
1204 |1|(% colspan="2" %)Open-collector output(FMR)  
1205
1206 The FM terminal is a programmable multiplexing terminal. It can be used as an open collector output terminal (FMR). Refer to F6.01 for FMR function.
1207
1208 FMP function needs hardware support
1209
1210 (% class="table-bordered" %)
1211 |**F6.01**|FMR function|Default|0
1212 |**F6.02**|Relay 1 function|Default|2
1213 |**F6.03**|Relay 2 function|Default|1
1214 |**F6.06**|VDO Output Selection|Default|0
1215
1216 **The functions of the multi-function output terminals are as follows:**
1217
1218 (% class="table-bordered" %)
1219 |(% style="width:108px" %)**Set Value**|(% style="width:469px" %)**Function**|(% style="width:912px" %)**Description**
1220 |(% style="width:108px" %)0|(% style="width:469px" %)No output|(% style="width:912px" %)The output terminal has no function  
1221 |(% style="width:108px" %)1|(% style="width:469px" %)AC Drive running|(% style="width:912px" %)It means that the inverter is running and there is an output frequency (it can be zero) and the ON signal is output at this time.
1222 |(% style="width:108px" %)2|(% style="width:469px" %)Fault output(stop)|(% style="width:912px" %)When the inverter fails and it stops, it outputs ON signal.
1223 |(% style="width:108px" %)3|(% style="width:469px" %)Frequency level detection FDT1 output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.08 and F8.09.
1224 |(% style="width:108px" %)4|(% style="width:469px" %)Frequency reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.21
1225 |(% style="width:108px" %)5|(% style="width:469px" %)Zero-speed running(no output at stop)|(% style="width:912px" %)The inverter runs and the output frequency is 0, and the ON signal is output.
1226 |(% style="width:108px" %)6|(% style="width:469px" %)Motor overload pre-warning|(% style="width:912px" %)Before the motor electronic thermal protection acts, it is judged according to the overload forecast value, and the ON signal is output after the forecast value is exceeded. Motor overload parameters are set in FA.00~~FA.02.
1227 |(% style="width:108px" %)7|(% style="width:469px" %)AC Drive overload pre-warning|(% style="width:912px" %)After checking that the inverter is overloaded, advance 10s before the protection occurs. Output ON signal.
1228 |(% style="width:108px" %)8|(% style="width:469px" %)Set count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.08, the ON signal is output.
1229 |(% style="width:108px" %)9|(% style="width:469px" %)Designated count value reached|(% style="width:912px" %)When the count value reaches the value set by FB.09, the ON signal is output. Refer to the function description of FB group for counting function
1230 |(% style="width:108px" %)10|(% style="width:469px" %)Length reached|(% style="width:912px" %)When the actual length detected exceeds the length set by FB.05, the ON signal is output.
1231 |(% style="width:108px" %)11|(% style="width:469px" %)PLC cycle complete|(% style="width:912px" %)When the simple PLC runs a cycle, it outputs a pulse signal with a width of 250ms.
1232 |(% style="width:108px" %)12|(% style="width:469px" %)Accumulative running time reached|(% style="width:912px" %)When the accumulative running time of the inverter exceeds the time set by F8.17, it outputs ON signal.
1233 |(% style="width:108px" %)13|(% style="width:469px" %)Frequency limited|(% style="width:912px" %)When the set frequency exceeds the upper and lower frequency limits and the inverter output frequency reaches the upper and lower frequency limits, the ON signal is output.
1234 |(% style="width:108px" %)14|(% style="width:469px" %)Torque limited|(% style="width:912px" %)When the torque limit function is activated, the stall protection function automatically activates, automatically changes the output frequency, and outputs an ON signal to indicate that the output torque is limited. This output signal can be used to reduce the load or display an overload status signal on the monitoring device.
1235 |(% style="width:108px" %)15|(% style="width:469px" %)Ready for running|(% style="width:912px" %)The power supply of the main circuit and control circuit is established, the protection function of the inverter does not operate, and the inverter outputs ON signal when it is in an operational state.
1236 |(% style="width:108px" %)16|(% style="width:469px" %)AI1 larger than AI2|(% style="width:912px" %)When the value of analog input AI1 is greater than the other input AI2, the ON signal is output.
1237 |(% style="width:108px" %)17|(% style="width:469px" %)Frequency upper limit reached|(% style="width:912px" %)When the operating frequency reaches the upper limit frequency, the ON signal is output.
1238 |(% style="width:108px" %)18|(% style="width:469px" %)Frequency lower limit reached|(% style="width:912px" %)When the operating frequency reaches the lower limit frequency, the ON signal is output.
1239 |(% style="width:108px" %)19|(% style="width:469px" %)Undervoltage state output|(% style="width:912px" %)When the inverter is under voltage, it outputs ON signal.
1240 |(% style="width:108px" %)20|(% style="width:469px" %)Communication setting|(% style="width:912px" %)See the relevant description in the communication protocol.
1241 |(% style="width:108px" %)21|(% style="width:469px" %)Positioning completed (Reserved)|(% style="width:912px" %)Reserved
1242 |(% style="width:108px" %)22|(% style="width:469px" %)Positioning close (Reserved)|(% style="width:912px" %)Reserved
1243 |(% style="width:108px" %)23|(% style="width:469px" %)Zero-speed running 2(having output at stop)|(% style="width:912px" %)When the output frequency of the inverter is 0, the ON signal is output (also output when stopping).
1244 |(% style="width:108px" %)24|(% style="width:469px" %)Accumulative power-on time reached|(% style="width:912px" %)When F7.13 (accumulated power-on time of the inverter) exceeds the time set by F8.16, the ON signal is output.
1245 |(% style="width:108px" %)25|(% style="width:469px" %)Frequency level detection FDT2|(% style="width:912px" %)Please refer to the detailed description of function codes F8.28 and F8.39.
1246 |(% style="width:108px" %)26|(% style="width:469px" %)Frequency 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.30 and F8.31.
1247 |(% style="width:108px" %)27|(% style="width:469px" %)Frequency 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.32 and F8.33.
1248 |(% style="width:108px" %)28|(% style="width:469px" %)Current 1 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.38 and F8.30.
1249 |(% style="width:108px" %)29|(% style="width:469px" %)Current 2 reached|(% style="width:912px" %)Please refer to the detailed description of function codes F8.40 and F8.41.
1250 |(% style="width:108px" %)30|(% style="width:469px" %)Timing reached|(% style="width:912px" %)When F8.42 (timing function selection) is valid, the inverter will output ON signal when the current running time reaches the set timing time.
1251 |(% style="width:108px" %)31|(% style="width:469px" %)AI1 input limit exceeded|(% style="width:912px" %)When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.45 (AI1 input protection lower limit), FM (FMR) outputs ON signal.
1252 |(% style="width:108px" %)32|(% style="width:469px" %)Offload|(% style="width:912px" %)Output ON signal when the inverter is in the off-load state
1253 |(% style="width:108px" %)33|(% style="width:469px" %)Running direction|(% style="width:912px" %)Output ON signal when inverter is running in reverse
1254 |(% style="width:108px" %)34|(% style="width:469px" %)Zero current detection|(% style="width:912px" %)Please refer to the detailed description of function codes F8.34 and F8.35.
1255 |(% style="width:108px" %)35|(% style="width:469px" %)Module temperature reached|(% style="width:912px" %)When F7.07 (IGBT module heatsink temperature) reaches the value of F8.47 (module temperature reached), output ON signal
1256 |(% style="width:108px" %)36|(% style="width:469px" %)Software overcurrent output|(% style="width:912px" %)Please refer to the detailed description of function codes F8.36 and F8.37.
1257 |(% style="width:108px" %)37|(% style="width:469px" %)Lower limit frequency reached (non-operational)|(% style="width:912px" %)When the running frequency reaches the lower limit frequency, the ON signal is output (also output when stopping).
1258 |(% style="width:108px" %)38|(% style="width:469px" %)Fault output (continue operation)|(% style="width:912px" %)When the inverter fails, output ON signal
1259 |(% style="width:108px" %)39|(% style="width:469px" %)Reserved|(% style="width:912px" %)
1260 |(% style="width:108px" %)40|(% style="width:469px" %)This running time arrive|(% style="width:912px" %)
1261 |(% style="width:108px" %)41|(% style="width:469px" %)User-defined output 1|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.28~~F6.32 for details.
1262 |(% style="width:108px" %)42|(% style="width:469px" %)User-defined output 2|(% style="width:912px" %)The user can define the conditions for the output terminal to output, see F6.23~~F6.37 for details.
1263 |(% style="width:108px" %)43|(% style="width:469px" %)(((
1264 Timer output
1265 )))|(% style="width:912px" %)(((
1266 If the timer arrives, the VFD outputs ON signal
1267 )))
1268 |(% style="width:108px" %)44|(% style="width:469px" %)(((
1269 Forward running status
1270 )))|(% style="width:912px" %)(((
1271 If the VFD is running forward, output ON signal
1272 )))
1273 |(% style="width:108px" %)45|(% style="width:469px" %)(((
1274 Reverse running status
1275 )))|(% style="width:912px" %)(((
1276 If the VFD is running reverse, output ON signal
1277 )))
1278
1279 (% class="table-bordered" %)
1280 |F6.11|FMP(Pulse output terminal)output selection(Reserved)|Default|0
1281 |F6.12|AO1 function|Default|0
1282 |F6.13|AO2 function|Default|1
1283
1284 The standard output of analog output (zero offset is 0, gain is 1) is 0mA~~20mA (or 0V~~10V), and the FMP output range is from 0Hz to the setting of function code F5.09.
1285
1286 The range of the corresponding amount expressed is shown in the following Sheet:
1287
1288 (% class="table-bordered" %)
1289 |**Set value**|**Function**|**Range**
1290 |0|Running frequency|0~~Maximum output power
1291 |1|Set frequency|0~~Maximum output frequency
1292 |2|Output current|0~~2 times motor rated current
1293 |3|Output torque|0~~2 times motor rated torque
1294 |4|Output power|0~~2 times motor rated power
1295 |5|Output voltage|0~~1.2 times AC drive rated voltage
1296 |6|PULSE input|0.01kHz~~100.00kHz
1297 |7|AI1|0V~~10V
1298 |8|AI2|0V~~10V/0~~20mA
1299 |10|Length|0~~Maximum set length
1300 |11|Count value|0~~Maximum count value
1301 |12|Communication setting|-10000~~10000
1302 |13|Motor Speed|0~~Rotation speed corresponding to maximum output frequency
1303 |14|Output Current|0-1000A,as 0-10V
1304 0-1000V,as 0-10V
1305 |15|Output Voltage|0.0V~~1000.0V
1306
1307 (% class="table-bordered" %)
1308 |(% rowspan="2" %)**F6.14**|FMP output maximum frequency|Default|50.00kHz   
1309 |Setting range|(% colspan="2" %)0.01kHz~~100.00kHz   
1310
1311 When the FM terminal is selected as pulse output, the maximum frequency value of the pulse can be output.
1312
1313 (% class="table-bordered" %)
1314 |(% rowspan="2" %)**F6.15**|AO1 offset coefficient|Default|0.0%   
1315 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1316 |(% rowspan="2" %)**F6.16**|AO1 gain|Default|1.00   
1317 |Setting range|(% colspan="2" %)-10.00~~10.00
1318 |(% rowspan="2" %)**F6.17**|AO2 offset coefficient|Default|0.00%   
1319 |Setting range|(% colspan="2" %)-100.0%~~100.0%
1320 |(% rowspan="2" %)**F6.18**|AO2 gain|Default|1.00   
1321 |Setting range|(% colspan="2" %)-10.00~~10.00
1322
1323 If the zero offset is represented by "b", the gain is represented by k, the actual output is represented by Y, and the standard output is represented by X, the actual output is Y=kX+b; AO1, A02 zero offset coefficient 100% corresponds to 10V (20mA). Standard output refers to the output 0V~~10V (20mA) corresponding to the analog output representing 0~~max. Generally used to correct the zero drift of analog output and the deviation of output amplitude. It can also be customized to any desired output curve: For example: if the analog output content is the operating frequency, and hope to output 8V (16mA) when the frequency is 0, and 3V (6mA) when the frequency is the maximum frequency, the gain should be set to " .0.50", the zero offset should be set to "80%".
1324
1325 (% class="table-bordered" %)
1326 |(% rowspan="2" %)**F6.19**|FMR connecting delay time|Default|0.0s
1327 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1328 |(% rowspan="2" %)**F6.20**|RELAY1 connecting delay time|Default|0.0s
1329 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1330 |(% rowspan="2" %)**F6.21**|RELAY2 connecting delay time|Default|0.0s
1331 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1332 |(% rowspan="2" %)**F6.22**|VDO connecting delay time|Default|0.0s
1333 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1334 |(% rowspan="2" %)**F6.23**|FMR disconnecting delay time|Default|0.0s
1335 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1336 |(% rowspan="2" %)**F6.24**|RELAY1 disconnecting delay time|Default|0.0s
1337 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1338 |(% rowspan="2" %)**F6.25**|RELAY2 disconnecting delay time|Default|0.0s
1339 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1340 |(% rowspan="2" %)**F6.26**|VDO disconnecting delay time|Default|0.0s
1341 |Setting range|(% colspan="2" %)0.0s~~3600.0s
1342
1343 Set the delay time from the state change of the output terminal FMR, relay 1, relay 2, VDO to the output change.
1344
1345 (% class="table-bordered" %)
1346 |(% rowspan="8" %)**F6.27**|(% colspan="2" %)Output terminal valid state selection|Default|00000
1347 |(% rowspan="7" %)Setting range|Ones Place|(% colspan="2" %)FMR valid state selection
1348 |0|(% colspan="2" %)Positive Logic
1349 |1|(% colspan="2" %)Negative Logic
1350 |Tens Place|(% colspan="2" %)RELAY1 valid state selection(0~~1,as above)
1351 |Hundreds Place|(% colspan="2" %)RELAY2 valid state selection(0~~1,as above)
1352 |Thousands Place|(% colspan="2" %)Reserved
1353 |Ten Thousands Place|(% colspan="2" %)Reserved
1354
1355 Define the positive and negative logic of output terminal FMR, relay 1, and relay 2.
1356
1357 Positive logic: the digital output terminal is valid when connected to the corresponding common terminal, but invalid when disconnected;
1358
1359 Inverse logic: the connection between the digital output terminal and the corresponding common terminal is invalid, and the disconnection is valid;
1360
1361 (% class="table-bordered" %)
1362 |(% rowspan="2" %)**F6.28**|(((
1363 User defined output
1364
1365 variability selection (EX)1
1366 )))|Default|00
1367 |Setting range|(% colspan="2" %)0~~49
1368
1369 This parameter is used to select the reference variable for custom output. Use the selected variable EX as the comparison object
1370
1371 (% class="table-bordered" %)
1372 |(% rowspan="2" %)**F6.29**|User defined comparison method 1|Default|00
1373 |Setting range|(% colspan="2" %)0~~14
1374
1375 The ones place selection comparison test mode, the variable selected by F6.28 is used as the comparison test object, and the comparison and test values are set by F6.31~~F6.32.
1376
1377 Tens place selects the output mode. False value output means output if the condition is not met, and no output if the condition is met; true value output means output if the condition is met, and no output if the condition is not met.
1378
1379 (% class="table-bordered" %)
1380 |(% rowspan="2" %)**F6.30**|User defined output dead zone 1|Default|0
1381 |Setting range|(% colspan="2" %)0~~65535
1382
1383 When the comparison test mode of F6.29 is set to be greater than or equal to or less than or equal to, F6.30 is used to define the processing dead zone value centered on the comparison value X1, and the processing dead zone is only for 1 and 2 of the F6.29 comparison test mode It has an effect, but no effect on 0, 3, and 4. For example, when F6.29 is set to 11, when EX increases from 0 upwards, the output is valid after increasing to greater than or equal to X1+F6.30; when EX decreases downward, after decreasing to less than or equal to X1.F6.30, The output is invalid.
1384
1385 (% class="table-bordered" %)
1386 |(% rowspan="2" %)**F6.31**|(((
1387 User-defined 1 output
1388
1389 comparison value X1
1390 )))|Default|0
1391 |Setting range|(% colspan="2" %)0~~65535
1392 |(% rowspan="2" %)**F6.32**|(((
1393 User-defined 1 output
1394
1395 comparison value X2
1396 )))|Default|0
1397 |Setting range|(% colspan="2" %)0~~65535
1398
1399 These two parameters are used to set the comparison value of the custom output.
1400
1401 The following is an example of using custom output:
1402
1403 When the set frequency is greater than or equal to 20.00HZ, the relay is closed;
1404
1405 The setting parameters are as follows: F6.02 = 41, F6.28 = 1, F6.29 = 11, F6.30 = 0, F6.31 = 2000;
1406
1407 2. The relay is required to close when the bus voltage is less than or equal to 500.0V; in order to avoid frequent relay actions when the detection voltage is 5.0V up and down from 500.0V, it is required to be treated as a dead zone in the range of (500.0-5.0) ~~ (500.0+5.0) .
1408
1409 The setting parameters are as follows: F6.02 = 41, F6.28 = 2, F6.29 = 01, F6.30 = 50, F6.31 = 5000;
1410
1411 When the inverter is required to reverse, the relay is closed:
1412
1413 The setting parameters are as follows: F6.02 = 41, F6.28 = 5, F6.29 = 14, F6.31 = 8, F6.32 = 8;
1414
1415 When AI1 input is required to be greater than 3.00V and less than or equal to 6.00V, the relay is closed:
1416
1417 The setting parameters are as follows: F6.02 = 41, F6.28 = 13, F6.29 = 13, F6.31 = 300, F6.32 = 600;
1418
1419 (% class="table-bordered" %)
1420 |(% rowspan="2" %)**F6.33**|(((
1421 User defined output
1422
1423 variability selection (EX)2
1424 )))|Default|00
1425 |Setting range|(% colspan="2" %)0~~49
1426
1427 (% class="table-bordered" %)
1428 |(% rowspan="2" %)**F6.34**|User defined comparison method 2|Default|00
1429 |Setting range|(% colspan="2" %)0~~14
1430
1431 (% class="table-bordered" %)
1432 |(% rowspan="2" %)**F6.35**|User defined output dead zone 1|Default|0
1433 |Setting range|(% colspan="2" %)0~~65535
1434
1435 (% class="table-bordered" %)
1436 |(% rowspan="2" %)**F6.36**|(((
1437 User-defined 2 output
1438
1439 comparison value X1
1440 )))|Default|0
1441 |Setting range|(% colspan="2" %)0~~65535
1442 |(% rowspan="2" %)**F6.37**|(((
1443 User-defined 2output
1444
1445 comparison value X2
1446 )))|Default|0
1447 |Setting range|(% colspan="2" %)0~~65535
1448
1449 For the second output, the parameter setting method is the same as F6.28~~F6.32.
1450
1451 = 8 F7 group keypad display =
1452
1453 (% class="table-bordered" %)
1454 |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1455 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
1456 |1|(% colspan="2" %)Upload local functional parameters to LCD keypad
1457 |2|(% colspan="2" %)Download functional parameters from LCD keypad to AC drive
1458
1459 Note: This function only supports LCD keyboard
1460
1461 (% class="table-bordered" %)
1462 |(% rowspan="7" %)**F7.01**|(% colspan="2" %)MF.K key function selection|Default|0
1463 |(% rowspan="6" %)Setting range|0|(% colspan="2" %)MF.K disabled
1464 |1|(% colspan="2" %)Switchover between keypad control and remote command control(terminal or communication)
1465 |2|(% colspan="2" %)Switchover between forward rotation and reverse rotation
1466 |3|(% colspan="2" %)Forward JOG
1467 |4|(% colspan="2" %)Reverse JOG
1468 |5|(% colspan="2" %)Menu mode switching
1469
1470 The MF.K key is the multi-function key. The function of the keyboard MF.K key can be defined through parameter settings. This key can be used to switch during stop and running.
1471
1472 0: When set to 0, this key has no function.
1473
1474 1: Switchover between keypad control and remote command control(terminal or communication). Refers to the switch of the command source, from the current command source to keyboard control (local operation). If the current command source is keyboard control, this command has no effect.
1475
1476 2: Switchover between forward rotation and reverse rotation
1477
1478 Switch the direction of the frequency command through the keyboard MF.K key. It is valid only in the operation panel command channel.
1479
1480 3: Forward jog
1481
1482 Realize forward jog (FJOG) by keyboard MF.K key.
1483
1484 4: Reverse jog
1485
1486 Reverse jog (RJOG) can be realized by keyboard MF.K key.
1487
1488 5: Menu mode switching
1489
1490 The menu mode switch is realized through the keyboard MF.K key.
1491
1492 (% class="table-bordered" %)
1493 |(% rowspan="3" %)**F7.02**|(% colspan="4" %)STOP/RESET key function|(% colspan="2" %)Default|(% colspan="2" %)1
1494 |(% colspan="3" rowspan="2" %)Setting range|0|(% colspan="4" %)STOP/RESET key enabled only in keypad control
1495 |1|(% colspan="4" %)STOP/RESET key enabled in any operation mode
1496 |(% rowspan="2" %)**F7.03**|(% colspan="5" %)LED display parameters 1 while running|(% colspan="2" %)Default|17
1497 |Setting range|(((
1498 0000
1499
1500 ~~FFFF
1501 )))|(% colspan="6" %)(((
1502 Bit00: Running frequency (Hz)
1503
1504 Bit01: Set frequency (Hz)
1505
1506 Bit02: DC bus voltage (V)
1507
1508 Bit03: Output voltage (V)
1509
1510 Bit04: Output current (A)
1511
1512 Bit05: Output power (kW)
1513
1514 Bit06: Output torque ~(%)
1515
1516 Bit07: DI input status
1517
1518 Bit08: DO output status
1519
1520 Bit09: AI1 power (V)
1521
1522 Bit10: AI2 power (V)
1523
1524 Bit11: Reserved
1525
1526 Bit12: Count value
1527
1528 Bit13: Length value
1529
1530 Bit14: Load speed display
1531
1532 Bit15: PID set value
1533
1534 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.03.
1535 )))
1536 |(% rowspan="2" %)**F7.04**|(% colspan="5" %)LED display parameters 2 while running|(% colspan="2" %)Default|0
1537 |Setting range|(((
1538 0000
1539
1540 ~~FFFF
1541 )))|(% colspan="6" %)(((
1542 Bit00: PID feedback
1543
1544 Bit01: PLC stage
1545
1546 Bit02: Feedback speed (0.1Hz)
1547
1548 Bit03: Reserved
1549
1550 Bit04: Remaining running time
1551
1552 Bit05: AI1 voltage before correction
1553
1554 Bit06: AI2 voltage before correction
1555
1556 Bit07: Reserved
1557
1558 Bit08: Linear speed
1559
1560 Bit09: Current power-on time
1561
1562 Bit10: Current running time
1563
1564 Bit11: Reserved
1565
1566 Bit12: Communication setting
1567
1568 Bit13: Reserved
1569
1570 Bit14: Main frequency X display
1571
1572 Bit15: Auxiliary frequency Y display
1573
1574 If you need to display the above parameters while running, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.04
1575 )))
1576
1577 The running display parameters are used to set the status parameters that can be viewed when the inverter is running. Up to 32 state parameters can be viewed. Select the state parameters to be displayed according to the digits of the parameter values of F7.03 and F7.04, and the display sequence starts from the lowest bit of F7.03.
1578
1579 (% class="table-bordered" %)
1580 |(% rowspan="2" %)**F7.05**|(% colspan="5" %)LED display parameters while stopping|(% colspan="2" %)Default|33
1581 |(% colspan="2" %)Setting range|(((
1582 0000
1583
1584 ~~FFFF
1585 )))|(% colspan="5" %)(((
1586 Bit00: Set frequency (Hz)
1587 Bit01: DC bus voltage(V)
1588 Bit02: DI input status
1589 Bit03: DO output status
1590 Bit04: AI1 voltage (V)
1591 Bit05: AI2 voltage (V)
1592 Bit06: Reserved
1593 Bit07: Count value
1594 Bit08: Length value
1595 Bit09: PLC stage
1596 Bit10: Load speed display
1597 Bit11: PID set value
1598 Bit12: Reserved
1599
1600 Bit13: PID feedback value
1601
1602 If you need to display the above parameters while stopping, set the corresponding digit to 1, convert this binary number to hexadecimal and set it to F7.05
1603 )))
1604 |(% colspan="2" rowspan="2" %)**F7.06**|(% colspan="3" %)Load speed display coefficien|(% colspan="2" %)Default|(% colspan="2" %)1.0000
1605 |(% colspan="3" %)Setting range|(% colspan="4" %)0.0001~~6.5000
1606
1607 Correspond the output frequency of the inverter to the load speed through this parameter. Set when you need to display the load speed.
1608
1609 The specific calculation method is described in F7.12.
1610
1611 (% class="table-bordered" %)
1612 |(% rowspan="2" %)**F7.07**|Heatsink temperature of IGBT|Default|0
1613 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1614
1615 Displays the temperature of the IGBT module. The over-temperature protection value of IGBT module of different models may be different.
1616
1617 (% class="table-bordered" %)
1618 |(% rowspan="2" %)**F7.08**|Heatsink temperature of rectifier bridge|Default|0
1619 |Setting range|(% colspan="2" %)0.0℃~~100.0℃
1620
1621 Displays the temperature of the rectifier bridge. The over-temperature protection value of rectifier bridge of different models may be different.
1622
1623 (% class="table-bordered" %)
1624 |(% rowspan="2" %)**F7.09**|Accumulative running time|Default|0h
1625 |Setting range|(% colspan="2" %)0h~~65535h
1626
1627 Display the cumulative running time of the inverter so far. When this time reaches the set running time (F8.17), the multi-function digital output (12) of the inverter will act.
1628
1629 (% class="table-bordered" %)
1630 |(% rowspan="2" %)**F7.10**|(% colspan="2" %)Product Number|Default|-
1631 |(% colspan="2" %)Setting range|(% colspan="2" %)Product Number of AC Drive
1632 |(% rowspan="2" %)**F7.11**|(% colspan="2" %)Software Version|Default|
1633 |(% colspan="2" %)Setting range|(% colspan="2" %)Software Version of Control Board
1634 |(% rowspan="5" %)**F7.12**|(% colspan="2" %)Number of decimal places for load speed display|Default|0
1635 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)0 decimal places
1636 |1|(% colspan="2" %)1 decimal places
1637 |2|(% colspan="2" %)2 decimal places
1638 |3|(% colspan="2" %)3 decimal places
1639
1640 The load speed calculation method is: if the load speed display coefficient is 2.000, the load speed decimal point position is 2: 2 decimal points.
1641
1642 When the inverter is running: if the running frequency is 40.00 Hz, 4000*2.000 = 8000, and 2 decimal points display, the load speed is 80.00.
1643
1644 When the inverter is stopped: If the set frequency is 50.00 Hz, 5000*2.000 = 10000, and the load speed is 100.00 when displayed with 2 decimal points.
1645
1646 (% class="table-bordered" %)
1647 |(% rowspan="2" %)**F7.13**|Accumulative power-on time|Default|0h
1648 |Setting range|(% colspan="2" %)0h~~65535h
1649
1650 Display the cumulative power-on time of the inverter so far. When this time reaches the set power-on time (F8.17), the inverter's multi-function digital output (24) will act.
1651
1652 (% class="table-bordered" %)
1653 |(% rowspan="2" %)**F7.14**|Accumulative power consumption|Default|0
1654 |Setting range|(% colspan="2" %)0~~65535
1655
1656 Displays the cumulative power consumption of the inverter so far.
1657
1658 (% class="table-bordered" %)
1659 |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1660 |Setting range|(% colspan="2" %)-
1661
1662 = 9 F8 group auxiliary functions =
1663
1664 (% class="table-bordered" %)
1665 |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
1666 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1667 |(% rowspan="2" %)**F8.01**|JOG acceleration time|Default|20.0s
1668 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1669 |(% rowspan="2" %)**F8.02**|JOG deceleration time|Default|20.0s  
1670 |Setting range|(% colspan="2" %)0.0s~~6500.0s
1671
1672 Define the given frequency and acceleration/deceleration time of the inverter during jog. The jog process starts and stops according to start mode 0 (F1.00, direct start) and stop mode 0 (F1.10, decelerate to stop).
1673
1674 Jog acceleration time refers to the time required for the inverter to accelerate from 0Hz to the maximum output frequency (F0.10).
1675
1676 Jog deceleration time refers to the time required for the inverter to decelerate from the maximum output frequency (F0.10) to 0Hz.
1677
1678 (% class="table-bordered" %)
1679 |(% rowspan="2" %)**F8.03**|Acceleration time2|Default|Model dependent
1680 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1681 |(% rowspan="2" %)**F8.04**|Deceleration time2|Default|Model dependent
1682 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1683 |(% rowspan="2" %)**F8.05**|Acceleration time3|Default|Model dependent
1684 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1685 |(% rowspan="2" %)**F8.06**|Deceleration time3|Default|Model dependent
1686 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1687 |(% rowspan="2" %)**F8.07**|Acceleration time4|Default|Model dependent
1688 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1689 |(% rowspan="2" %)**F8.08**|Deceleration time4|Default|Model dependent
1690 |Setting range|(% colspan="2" %)0. 0s~~6500.0s
1691
1692 The acceleration and deceleration time can be selected from F0.18 and F0.19 and the above three types of acceleration and deceleration time. The meanings are the same, please refer to the relevant description of F0.18 and F0.19. The acceleration and deceleration time 1~~4 during the operation of the inverter can be selected through different combinations of the multifunctional digital input terminal DI. Please refer to the function codes F5.01~~F5.05.
1693
1694 (% class="table-bordered" %)
1695 |(% rowspan="2" %)**F8.09**|Jump frequency 1|Default|0.00Hz
1696 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1697 |(% rowspan="2" %)**F8.10**|Jump frequency 2|Default|0.00Hz
1698 |Setting range|(% colspan="2" %)0.00 Hz~~F0.10
1699 |(% rowspan="2" %)**F8.11**|Frequency jump amplitude|Default|0.01Hz
1700 |Setting range|(% colspan="2" %)0.00~~F0.10
1701
1702 When the set frequency is within the jump frequency range, the actual running frequency will run at the jump frequency boundary close to the set frequency. By setting the jump frequency, the inverter can avoid the mechanical resonance point of the load. This inverter can set two jumping frequency points. If both skip frequencies are set to 0, this function will not work.
1703
1704 (% style="text-align:center" %)
1705 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49731ff18de325.png]]
1706
1707 Figure 6-9-1 Schematic diagram of hopping frequency
1708
1709 (% class="table-bordered" %)
1710 |(% rowspan="2" %)**F8.12**|Forward/Reverse rotation dead-zone time|Default|0.0s
1711 |Setting range|(% colspan="2" %)0.00s~~3000.0s
1712
1713 Set the transition time at the output zero frequency during the forward and reverse transition of the inverter, as shown in the figure below:
1714
1715 (((
1716 (% style="text-align:center" %)
1717 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_d8f000d30762f35.png]]
1718 )))
1719
1720 Figure 6-9-2 Schematic diagram of forward and reverse dead zone time
1721
1722 (% class="table-bordered" %)
1723 |(% rowspan="3" %)**F8.13**|(% colspan="2" %)Reverse control|Default|0
1724 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Enabled
1725 |1|(% colspan="2" %)Disabled
1726
1727 When this parameter is 0: it can be reverse controlled by keyboard, terminal or communication.
1728
1729 When this parameter is 1: the reverse control function is valid regardless of the command source selection, that is, the reverse control function is invalid under keyboard, terminal, and communication control.
1730
1731 (% class="table-bordered" %)
1732 |(% rowspan="3" %)**F8.14**|(% colspan="2" %)The carrier frequency is adjusted with temperature|Default|1
1733 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)No
1734 |1|(% colspan="2" %)Yes
1735
1736 Provide fixed and random PWM carrier frequency adjustment methods. Random PWM motor noise has a wide frequency domain, and fixed PWM motor noise frequency is fixed.
1737
1738 The carrier frequency temperature adjustment is effective, which means that the inverter can automatically adjust the carrier frequency according to its own temperature. Selecting this function can reduce the chance of inverter overheating alarm.
1739
1740 (% class="table-bordered" %)
1741 |(% rowspan="2" %)**F8.15**|Droop control|Default|0.00Hz
1742 |Setting range|(% colspan="2" %)0.00Hz~~10.00Hz
1743
1744 When multiple inverters drive the same load, the load distribution is unbalanced due to different speeds, which makes the inverter with higher speed bear heavier load. The droop control characteristic is that the speed droops as the load increases, which can make the load balanced.
1745
1746 This parameter adjusts the frequency change of the inverter with drooping speed.
1747
1748 (% class="table-bordered" %)
1749 |(% rowspan="2" %)**F8.16**|Setting of accumulated power-on arrive time|Default|0h
1750 |Setting range|(% colspan="2" %)0h~~65000h
1751
1752 Preset the power-on time of the inverter. When the accumulated power-on time (F7.13) reaches this set power-on time, the inverter's multi-function digital DO outputs a running time arrival signal.
1753
1754 (% class="table-bordered" %)
1755 |(% rowspan="2" %)**F8.17**|Setting of accumulated running arrive time|Default|0h
1756 |Setting range|(% colspan="2" %)0h~~65000h
1757
1758 Pre-set the running time of the inverter. When the accumulated running time (F7.09) reaches this set running time, the inverter's multi-function digital DO outputs a running time arrival signal.
1759
1760 (% class="table-bordered" %)
1761 |(% rowspan="3" %)**F8.18**|(% colspan="2" %)Startup protection|Default|0
1762 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Invalid
1763 |1|(% colspan="2" %)Valid
1764
1765 This function code is used to improve the safety protection coefficient. If it is set to 1, it has two effects: one is that if the running command exists when the inverter is powered on, the running command must be removed to eliminate the running protection status. The second is that if the running command still exists when the inverter fault is reset, the running command must be removed first to eliminate the running protection state. This can prevent the motor from running automatically without knowing it, causing danger.
1766
1767 (% class="table-bordered" %)
1768 |(% rowspan="2" %)**F8.19**|Frequency detection value (FDT1)|Default|50.00Hz
1769 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1770 |(% rowspan="2" %)**F8.20**|Frequency detection hysteresis (FDT1)|Default|5.0%
1771 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT1)
1772
1773 Set the detection value of the output frequency and the hysteresis value of the output operation release.
1774
1775 (% style="text-align:center" %)
1776 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_a185f8b9d5aa6fa7.png]]
1777
1778 Figure 6-9-3 FDT1 level diagram
1779
1780 (% class="table-bordered" %)
1781 |(% rowspan="2" %)**F8.21**|Detection amplitude of frequency reached|Default|0.0%
1782 |Setting range|(% colspan="2" %)0.00~~100%*F0.10
1783
1784 When the output frequency of the inverter reaches the set frequency value, this function can adjust its detection amplitude. As shown below:
1785
1786 (((
1787 (% style="text-align:center" %)
1788 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_5226db5d1f9834fd.png]]
1789 )))
1790
1791 Figure 6-9-4 Schematic diagram of frequency arrival detection amplitude
1792
1793 (% class="table-bordered" %)
1794 |(% rowspan="2" %)**F8.22**|(% colspan="2" %)Jump frequency during acceleration/deceleration|Default|0
1795 |Setting range|(% colspan="3" %)(((
1796 0:Disabled
1797
1798 1:Enabled
1799 )))
1800
1801 This function code is set to be valid. When the running frequency is within the jump frequency range, the actual running frequency will directly skip the set jump frequency boundary.
1802
1803 (% style="text-align:center" %)
1804 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_43540e37b92098da.png]]
1805
1806 Figure 6-9-5 Schematic diagram of effective jumping frequency during acceleration and deceleration
1807
1808 (% class="table-bordered" %)
1809 |(% rowspan="2" %)**F8.23**|(% colspan="2" %)Accumulated running time arrive selection|Default|0
1810 |Setting range|(% colspan="3" %)0:Keep running
1811 1:Fault warning
1812 |(% rowspan="2" %)**F8.24**|(% colspan="2" %)Accumulated power-on time arrive action selection|Default|0
1813 |Setting range|(% colspan="3" %)0:Keep running
1814 1:Fault warning
1815
1816 Set to 1: When the fault prompts, if the running time or power-on time arrives, according to the FA group fault protection action selection, the inverter will stop freely, decelerate to stop or continue to run (please refer to the function code FA.13~~FA.16 for detailed description).
1817
1818 (% class="table-bordered" %)
1819 |(% rowspan="2" %)**F8.25**|Acceleration time 1/2 switching frequency point|Default|0.00Hz
1820 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1821 |(% rowspan="2" %)**F8.26**|Deceleration time 1/2 switching frequency point|Default|0.00Hz
1822 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1823
1824 (% style="text-align:center" %)
1825 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_2b2ceaa98c745458.png]]
1826
1827 Figure 6-9-6 Schematic diagram of acceleration and deceleration time switching
1828
1829 ~1. Switchover selection during acceleration time
1830
1831 During acceleration, if the running frequency is less than F8.25 (acceleration time 1/2 switching frequency point), acceleration time 2 is selected, otherwise, acceleration time 1 is selected.
1832
1833 2. Switchover selection during deceleration time
1834
1835 During deceleration, if the running frequency is less than F8.26 (deceleration time 1/2 switching frequency point), deceleration time 2 is selected, otherwise, deceleration time 1 is selected.
1836
1837 (% class="table-bordered" %)
1838 |(% rowspan="2" %)**F8.27**|Terminal JOG preferred|Default|1
1839 |Setting range|(% colspan="2" %)(((
1840 0:Disabled
1841
1842 1:Enabled
1843 )))
1844
1845 This parameter is used to set the priority of terminal jog. When this parameter is set to be valid, once DI terminal receives the jog control command, the inverter will switch from other running states to terminal jog running state.
1846
1847 (% class="table-bordered" %)
1848 |(% rowspan="2" %)**F8.28**|Frequency detection value (FDT2)|Default|50.00Hz
1849 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1850 |(% rowspan="2" %)**F8.29**|Frequency detection hysteresis (FDT2)|Default|5.0%
1851 |Setting range|(% colspan="2" %)0.0%~~100.0%(FDT2)
1852
1853 The function of FDT2 is similar to the setting method of FDT1 (F8.19, F8.20).
1854
1855 (% style="text-align:center" %)
1856 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9a49acf9634cd985.png]]
1857
1858 Figure 6-9-7 FDT2 level diagram
1859
1860 (% class="table-bordered" %)
1861 |(% rowspan="2" %)**F8.30**|Arbitrary frequency reaching detection value 1|Default|50.00Hz
1862 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1863 |(% rowspan="2" %)**F8.31**|Arbitrary frequency reaching detection amplitude 1|Default|0.0%
1864 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1865 |(% rowspan="2" %)**F8.32**|Arbitrary frequency reaching detection value 2|Default|50.00Hz
1866 |Setting range|(% colspan="2" %)0.00Hz~~F0.10
1867 |(% rowspan="2" %)**F8.33**|Arbitrary frequency reaching detection amplitude 2|Default|0.0%
1868 |Setting range|(% colspan="2" %)0.0%~~100.0%(F0.10)
1869
1870 When the output frequency of the inverter is within the positive or negative detection range of the arbitrary arrival frequency detection value 1, 2, output pulse signal. As shown below:
1871
1872
1873 (((
1874 (% style="text-align:center" %)
1875 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3aef8d5790f3423f.png]]
1876 )))
1877
1878 Figure 6-9-8 Schematic diagram of arbitrary reaching frequency detection
1879
1880 (% class="table-bordered" %)
1881 |(% rowspan="2" %)**F8.34**|Zero current detection level|Default|5.0%
1882 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1883 |(% rowspan="2" %)**F8.35**|Zero current detection delay time|Default|0.10s
1884 |Setting range|(% colspan="2" %)0.00s~~600.00s
1885
1886 When the output current of the inverter is less than or equal to the zero current detection level and the duration exceeds the zero current detection delay time, a pulse signal is output. As shown below:
1887
1888 (% style="text-align:center" %)
1889 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_c93b84a4c5da944b.png]]
1890
1891 Figure 6-9-9 Schematic diagram of zero current detection
1892
1893 (% class="table-bordered" %)
1894 |(% rowspan="2" %)**F8.36**|Software overcurrent point|Default|200.0%
1895 |Setting range|(% colspan="2" %)0.0%(Invalid) ; 0.1%~~300.0%(Motor rated current)
1896 |(% rowspan="2" %)**F8.37**|Software overcurrent detection delay time|Default|0.00s
1897 |Setting range|(% colspan="2" %)0.00s~~600.00s
1898
1899 (((
1900 When the output current of the inverter is greater than or equal to the software overcurrent point and the duration exceeds the software overcurrent point detection delay time, a pulse signal is output. As shown below:
1901 )))
1902
1903 (% style="text-align:center" %)
1904 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_879549a41172d673.png]]
1905
1906 Figure 6-9-10 Schematic diagram of software overcurrent point detection
1907
1908 (% class="table-bordered" %)
1909 |(% rowspan="2" %)**F8.38**|Arbitrary reaching current 1|Default|100.0%
1910 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1911 |(% rowspan="2" %)**F8.39**|Arbitrary reaching current amplitude 1|Default|0.0%
1912 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1913 |(% rowspan="2" %)**F8.40**|Arbitrary reaching current 2|Default|100.0%
1914 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1915 |(% rowspan="2" %)**F8.41**|Arbitrary reaching current amplitude 2|Default|0.0%
1916 |Setting range|(% colspan="2" %)0.0%~~300.0%(Motor rated current)
1917
1918 When the output current of the inverter is within the detection amplitude of the positive and negative currents 1 and 2, it outputs a pulse signal. As shown below:
1919
1920 (% style="text-align:center" %)
1921 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_9c74ba626be55d06.png]]
1922
1923 Figure 6-9-11 Schematic diagram of arbitrary reaching frequency detection
1924
1925 (% class="table-bordered" %)
1926 |(% rowspan="3" %)**F8.42**|(% colspan="2" %)Timing function|Default|0
1927 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1928 |1|(% colspan="2" %)Enabled
1929 |(% rowspan="5" %)**F8.43**|(% colspan="2" %)Timing duration source|Default|0
1930 |(% rowspan="4" %)Setting range|0|(% colspan="2" %)F8.44 setting
1931 |1|(% colspan="2" %)AI1
1932 |2|(% colspan="2" %)AI2
1933 |3|(% colspan="2" %)Reserved
1934 |(% rowspan="2" %)**F8.44**|(% colspan="2" %)Timing duration|Default|0.0Min
1935 |Setting range|(% colspan="3" %)0.0Min~~6500.0Min
1936
1937 This function is used to complete the timing operation of the inverter. When the F8.42 timing function selection is valid, the inverter is running timing. When the set timing running time is reached, the inverter stops and outputs pulse signals. The timer will be cleared next time it runs. The timing remaining running time can be viewed through D0.20.
1938
1939 The set timing running time is determined by F8.43 and F8.44.
1940
1941 (% class="table-bordered" %)
1942 |(% rowspan="2" %)**F8.45**|(% colspan="2" %)AI1 input voltage lower limit|Default|3.10V
1943 |Setting range|(% colspan="3" %)0.00V~~F8.46
1944 |(% rowspan="2" %)**F8.46**|(% colspan="2" %)AI1 input voltage upper limit|Default|6.80V
1945 |Setting range|(% colspan="3" %)F8.45~~10.00V
1946
1947 When the value of analog input AI1 is greater than F8.46 (AI1 input protection upper limit) or less than F8.47 (AI1 input protection lower limit), FM (FMR) outputs a pulse signal.
1948
1949 (% class="table-bordered" %)
1950 |(% rowspan="2" %)**F8.47**|(% colspan="2" %)IGBT temperature threshold|Default|75℃
1951 |Setting range|(% colspan="3" %)0.00V~~F8.46
1952
1953 When F7.07 (IGBT module radiator temperature) reaches this value, output pulse signal
1954
1955 (% class="table-bordered" %)
1956 |(% rowspan="3" %)**F8.48**|(% colspan="2" %)Fast current limiting|Default|1
1957 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
1958 |1|(% colspan="2" %)Enabled
1959
1960 Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1961
1962 = 10 F9 group pid function of process control =
1963
1964 PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1965
1966 (% style="text-align:center" %)
1967 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1968
1969 Figure 6-10-1 Block diagram of process PID principle
1970
1971 (% class="table-bordered" %)
1972 |(% rowspan="8" %)**F9.00**|(% colspan="3" %)PID setting source|Default|0
1973 |(% rowspan="7" %)PID setting source|0|(% colspan="3" %)F9.01
1974 |1|(% colspan="3" %)AI1
1975 |2|(% colspan="3" %)AI2
1976 |3|(% colspan="3" %)Reserved
1977 |4|(% colspan="3" %)(((
1978 Reserved
1979 )))
1980 |5|(% colspan="3" %)Communication setting
1981 |6|(% colspan="3" %)Multi-speed instructions
1982
1983 When the frequency source selects PID, that is, if F0.03 or F0.04 is selected as 8, this group of functions will work. (Please refer to function code F0.03-F0.04). This parameter determines the target quantity given channel of the process PID. The set target value of the process PID is a relative value, and the set 100% corresponds to 100% of the feedback signal of the controlled system; the PID range (F9.04) is not necessary, because no matter how much the range is set, the system will It is calculated by relative value (0~~100%). However, if the PID range is set, the actual value of the signal corresponding to the PID setting and feedback can be visually observed through the keyboard display parameters.
1984
1985 (% class="table-bordered" %)
1986 |(% rowspan="2" %)**F9.01**|(% colspan="2" %)PID digital setting|Default|50.0%
1987 |Setting range|(% colspan="3" %)0.0%~~100.0%
1988
1989 When F9.00=0 is selected, the target source is keyboard setting. This parameter needs to be set. The reference value of this parameter is the feedback amount of the system.
1990
1991 (% class="table-bordered" %)
1992 |(% rowspan="10" %)**F9.02**|(% colspan="2" %)PID feedback source|Default|0
1993 |(% rowspan="9" %)Setting range|0|(% colspan="2" %)AI1
1994 |1|(% colspan="2" %)AI2
1995 |2|(% colspan="2" %)Reserved
1996 |3|(% colspan="2" %)AI1-AI2
1997 |4|(% colspan="2" %)PULSE setting(DI6)
1998 |5|(% colspan="2" %)Communication setting
1999 |6|(% colspan="2" %)AI1+AI2
2000 |7|(% colspan="2" %)MAX(~|AI1~|,~|AI2~|)
2001 |8|(% colspan="2" %)MIN (~|AI1~|,~|AI2~|)
2002
2003 Use this parameter to select the PID feedback channel.
2004
2005 (% class="table-bordered" %)
2006 |(% rowspan="3" %)**F9.03**|(% colspan="2" %)PID controlling direction|Default|0
2007 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Positive
2008 |1|(% colspan="2" %)Negative
2009
2010 Positive effect: When the feedback signal is less than the PID setting, the inverter output frequency is required to increase in order to make the PID balance. Such as the tension PID control of winding.
2011
2012 Reverse effect: When the feedback signal is greater than the PID setting, the output frequency of the inverter is required to decrease in order to balance the PID. Such as unwinding tension PID control.
2013
2014 The effect of this function is affected by terminal function 35: PID direction.
2015
2016 (% class="table-bordered" %)
2017 |(% rowspan="2" %)**F9.04**|(% colspan="2" %)PID setting feedback range|Default|1000
2018 |Setting range|0~~65535|(% colspan="2" %)PID given feedback range is a dimensionless unit. Used as the display of PID given and feedback.
2019 |(% rowspan="2" %)**F9.05**|(% colspan="2" %)Proportional gain P1|Default|20.0
2020 |Setting range|(% colspan="3" %)0.0~~100.0
2021 |(% rowspan="2" %)**F9.06**|(% colspan="2" %)Integral time I1|Default|2.00s
2022 |Setting range|(% colspan="3" %)0.01s~~10.00s
2023 |(% rowspan="2" %)**F9.07**|(% colspan="2" %)Differential time D1|Default|0.000s
2024 |Setting range|(% colspan="3" %)0.00~~10.000
2025
2026 Proportional gain P: determines the adjustment intensity of the entire PID regulator, the greater the P, the greater the adjustment intensity. The parameter of 100 means that when the deviation between the PID feedback amount and the given amount is 100%, the adjustment range of the PID regulator to the output frequency command is the maximum frequency (ignoring the integral effect and the derivative effect).
2027
2028 Integral time I: Decide how fast the PID regulator performs integral adjustment on the deviation between the PID feedback amount and the given amount. Integral time means that when the deviation between PID feedback quantity and given quantity is 100%, the integral regulator (ignoring proportional action and differential action) is continuously adjusted after this time, and the adjustment quantity reaches the maximum frequency (F0.09). The shorter the integration time, the greater the adjustment intensity.
2029
2030 Differential time D: determines the intensity of the PID regulator to adjust the rate of change of the deviation between the PID feedback quantity and the given quantity. Differential time means that if the feedback amount changes 100% within this time, the adjustment amount of the differential regulator is the maximum frequency (F0.09) (ignoring proportional action and integral action). The longer the derivative time, the greater the adjustment intensity.
2031
2032 (% class="table-bordered" %)
2033 |(% rowspan="2" %)**F9.08**|(% colspan="2" %)PID reverse cut-off frequency|Default|0.00Hz
2034 |Setting range|(% colspan="3" %)0.00~~F0.10
2035 |(% rowspan="2" %)**F9.09**|(% colspan="2" %)PID deviation limit|Default|0.01%
2036 |(% colspan="2" %)Setting range|(% colspan="2" %)0. 0%~~100.0%
2037
2038 Deviation limit: When the PID feedback deviation is within this range, PID stops adjusting;
2039
2040 (% class="table-bordered" %)
2041 |(% rowspan="2" %)**F9.10**|PID differential limit range|Default|0.10%
2042 |Setting range|(% colspan="2" %)0.00%~~100.00%
2043 |(% rowspan="2" %)**F9.11**|PID setting change time|Default|0.00s
2044 |Setting range|(% colspan="2" %)0.00s~~650.00s
2045
2046 PID given change time refers to the time required for the actual value of PID to change from 0.0% to 100.0%.
2047
2048 When the PID setting changes, the actual value of the PID setting will not respond immediately. Moreover, it changes linearly according to the given change time to prevent the given mutation from occurring.
2049
2050 (% class="table-bordered" %)
2051 |(% rowspan="2" %)**F9.12**|PID feedback filtering time|Default|0.00s
2052 |Setting range|(% colspan="2" %)0.00s~~60.00s
2053 |(% rowspan="2" %)**F9.13**|PID output filtering time|Default|0.00s
2054 |Setting range|(% colspan="2" %)0.00s~~60.00s
2055
2056 Filter the PID feedback and output value to eliminate sudden changes.
2057
2058 (% class="table-bordered" %)
2059 |(% rowspan="2" %)**F9.14**|(% colspan="2" %)Proportional gain P2|Default|20.0
2060 |Setting range|(% colspan="3" %)0.0~~100.0
2061 |(% rowspan="2" %)**F9.15**|(% colspan="2" %)Integral time I2|Default|2.00s
2062 |Setting range|(% colspan="3" %)0.01s~~10.00s
2063 |(% rowspan="2" %)**F9.16**|(% colspan="2" %)Differential time D2|Default|0.000s
2064 |Setting range|(% colspan="3" %)0.00~~10.000
2065
2066 The setting method is similar to F9.05, F9.06, F9.07. It is used in situations where PID parameter changes are required, see F9.18 introduction.
2067
2068 (% class="table-bordered" %)
2069 |(% rowspan="4" %)**F9.17**|(% colspan="3" %)PID parameter switchover condition|Default|0
2070 |(% rowspan="3" %)Setting range|0|(% colspan="3" %)No switchover
2071 |1|(% colspan="3" %)DI terminal
2072 |2|(% colspan="3" %)Automatic switchover based on deviation
2073 |(% rowspan="2" %)**F9.18**|(% colspan="3" %)PID parameter switchover deviation 1|Default|20.0%
2074 |Setting range|(% colspan="4" %)0.0%~~F9.20
2075 |(% rowspan="2" %)**F9.19**|(% colspan="3" %)PID parameter switchover deviation 2|Default|80.0%
2076 |Setting range|(% colspan="4" %)F9.19~~100.0%
2077
2078 In some applications, a set of PID parameters may not satisfy the entire running process. At this time, multiple groups of PID parameters may need to be switched.
2079
2080 When not switching, the PID parameter is constant as parameter group 1.
2081
2082 When the DI terminal is switched, the multi-function terminal function selection is 43: When the PID parameter switching terminal and the terminal is valid, the parameter group 2 is selected, otherwise, the parameter group 1 is selected.
2083
2084 To switch automatically according to the deviation, when the deviation between the reference and the feedback is less than the PID parameter switching deviation 1 (F9.19), use F9.05, F9.06, F9.07 as the PID adjustment parameters, and the deviation between the reference and the feedback When it is greater than PID switching deviation 2 (F9.20), use F9.15, F9.16, and F9.17 as PID adjustment parameters. The PID parameters of the deviation segment between the switching deviation 1 and the switching deviation 2 are two sets of PID parameters linear switching.
2085
2086 (% class="table-bordered" %)
2087 |(% rowspan="2" %)**F9.20**|(% colspan="2" %)PID initial value|Default|0.0%
2088 |Setting range|(% colspan="3" %)0.0%~~100.0%
2089 |(% rowspan="2" %)**F9.21**|(% colspan="2" %)PID initial value holding time|Default|0.00s
2090 |Setting range|(% colspan="3" %)0.00s~~650.00s
2091
2092 When PID is running, the inverter will first run with PID initial value (F9.21) given output and the duration is F9.22 (PID initial value holding time), and then start normal PID adjustment.
2093
2094 (% class="table-bordered" %)
2095 |(% rowspan="2" %)**F9.22**|(% colspan="2" %)Two output deviation forward maximum value|Default|1.00%.
2096 |Setting range|(% colspan="3" %)0.00%~~100.00%
2097 |(% rowspan="2" %)**F9.23**|(% colspan="2" %)Two output deviation reverse maximum value|Default|1.00%
2098 |Setting range|(% colspan="3" %)0.00%~~100.00%
2099
2100 This function code is used to limit the difference between the two beats (2ms/beat) of the PID output, so as to prevent the PID output from changing too fast. F9.23 and F9.24 respectively correspond to the maximum output deviation during forward and reverse rotation.
2101
2102 (% class="table-bordered" %)
2103 |(% rowspan="7" %)**F9.24**|(% colspan="3" %)PID integral property|Default|00
2104 |(% rowspan="6" %)Setting range|Ones Place|(% colspan="3" %)Integration separation
2105 |0|(% colspan="3" %)Disabled
2106 |1|(% colspan="3" %)Enabled
2107 |Tens Place|(% colspan="3" %)Output to limit value
2108 |0|(% colspan="3" %)Continue the integral
2109 |1|(% colspan="3" %)Stop the integral
2110
2111 Integration separation
2112
2113 When it is valid, if terminal function 22: integral pause is valid, the PID integral operation will stop. Only proportional and derivative are calculated.
2114
2115 Output to limit value
2116
2117 If it is to stop integration, when the PID output value reaches the maximum or minimum value, the PID integration stops calculating.
2118
2119 If it is continuous integration, the PID integration will be calculated at any time
2120
2121 (% class="table-bordered" %)
2122 |(% rowspan="2" %)**F9.25**|(% colspan="2" %)Detection value of PID feedback loss|Default|0.0%
2123 |Setting range|(% colspan="3" %)(((
2124 0.0%:No judging feedback loss
2125
2126 0.1%~~100.0%
2127 )))
2128 |(% rowspan="2" %)**F9.26**|(% colspan="2" %)Detection time of PID feedback loss|Default|0.0s
2129 |Setting range|(% colspan="3" %)0.0s~~20.0s
2130
2131 This function code is used to judge whether PID feedback is lost. When the PID feedback is less than the feedback loss detection value (F9.26) and the duration reaches F9.27 (feedback loss detection time), the inverter reports a fault and runs according to the fault handling method.
2132
2133 (% class="table-bordered" %)
2134 |(% rowspan="3" %)**F9.27**|(% colspan="3" %)PID operation at stop|Default|0
2135 |(% rowspan="2" %)Setting range|0|(% colspan="3" %)No PID operation at stop
2136 |1|(% colspan="3" %)PID operation at stop
2137
2138 (% class="table-bordered" %)
2139 |(% rowspan="3" %)**F9.28**|(% colspan="2" %)PID function selection|Default|0
2140 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Normal PID
2141 |1|(% colspan="2" %)Sleep PID
2142
2143 0: The inverter runs under normal PID control and the sleep function is invalid.
2144
2145 1: The inverter runs under sleep PID control, and the sleep function is enabled.
2146
2147 (% class="table-bordered" %)
2148 |(% rowspan="2" %)**F9.29**|PID sleep threshold|Default|60.0%
2149 |Setting range|(% colspan="2" %)0.0%~~100.0%
2150 |(% rowspan="2" %)**F9.30**|PID sleep delay|Default|3.0s
2151 |Setting range|(% colspan="2" %)0.0~~3600s
2152 |(% rowspan="2" %)**F9.31**|PID wake-up threshold|Default|20.0%
2153 |Setting range|(% colspan="2" %)0.0%~~100.0%
2154 |(% rowspan="2" %)**F9.32**|PID wake-up time delay|Default|3.0s
2155 |PID wake-up time delay|(% colspan="2" %)0.0~~3600s
2156
2157 When the sleep PID is selected, if the feedback is higher than the setting of F9.29 sleep threshold, the inverter will start the sleep timer. After the sleep delay time set by F9.30, if the feedback amount is still higher than the setting of F9.29 If the feedback is lower than the setting of the wake-up threshold of F9.31, the inverter will start the wake-up timer. After the time set by F9.32 wake-up delay, if the feedback If it is still lower than the set value of F9.31 wake-up threshold, the wake-up is successful and PID control is performed. Refer to Figure 6-22 below to understand the relationship between the above parameters.
2158
2159 (% style="text-align:center" %)
2160 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_229dff56f8f13b95.png]]
2161
2162 Figure 6-10-2 PID sleep and wake-up timing diagram
2163
2164 = 11 FA group faults & protection =
2165
2166 (% class="table-bordered" %)
2167 |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
2168 |(% rowspan="2" %)Setting range|0|Disabled
2169 |1|Enabled
2170
2171 Choose 0: The inverter has no overload protection for the load motor, at this time the thermal relay shall be added in front of the motor;
2172
2173 Choose 1: At this time, the inverter has overload protection function for the motor. See FA.01 for protection value.
2174
2175 (% class="table-bordered" %)
2176 |(% rowspan="2" %)**FA.01**|Motor overload protection gain|Default|1.00
2177 |Setting range|(% colspan="2" %)0.20~~10.00
2178
2179 Motor overload protection is an inverse time curve; 220%×(FA.01)×motor rated current for 1 minute, 150%×(FA.01)×motor rated current for 60 minutes.
2180
2181 (% class="table-bordered" %)
2182 |(% rowspan="2" %)**FA.02**|Motor overload warning coefficient|Default|80%
2183 |Setting range|(% colspan="2" %)50%~~100%
2184
2185 The reference value of this value is the motor overload current. When the inverter detects that the output current reaches (FA.02) × motor overload current and continues for the specified time on the inverse time curve, it outputs a pre-alarm signal from DO or relay.
2186
2187 (% class="table-bordered" %)
2188 |(% rowspan="2" %)**FA.03**|Overvoltage stall gain|Default|10
2189 |Setting range|(% colspan="2" %)0 (Invalid)~~100
2190
2191 Adjust the inverter's ability to suppress overvoltage stall. The larger the value, the stronger the ability to suppress overvoltage.
2192
2193 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2194
2195 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overvoltage faults may occur.
2196
2197 (% class="table-bordered" %)
2198 |(% rowspan="2" %)**FA.04**|Overvoltage stall protective voltage|Default|130%
2199 |Setting range|(% colspan="2" %)120%~~150%(3 phase)
2200
2201 Select the protection point of the overvoltage stall function. When this value is exceeded, the inverter starts to perform the over-voltage stall protection function.
2202
2203 (% class="table-bordered" %)
2204 |(% rowspan="2" %)**FA.05**|Overcurrent stall gain|Default|Model dependent
2205 |Setting range|0~~100|
2206
2207 Adjust the inverter's ability to suppress excessive stall speed. The larger the value, the stronger the ability to suppress overcurrent.
2208
2209 For loads with small inertia, this value should be small, otherwise the dynamic response of the system will slow down.
2210
2211 For loads with large inertia, this value should be large, otherwise the suppression effect is not good, and overcurrent faults may occur.
2212
2213 (% class="table-bordered" %)
2214 |(% rowspan="2" %)**FA.06**|Overvoltage stall protective current|Default|150%
2215 |Setting range|(% colspan="2" %)100%~~200%
2216
2217 Select the current protection point for the over-current stall function. When this value is exceeded, the inverter starts to perform the overcurrent stall protection function.
2218
2219 (% class="table-bordered" %)
2220 |(% rowspan="3" %)**FA.07**|(% colspan="2" %)Short-circuit to ground upon power-on|Default|1
2221 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2222 |1|(% colspan="2" %)Enabled
2223
2224 The inverter can be selected to detect whether the motor has a ground protection short-circuit fault when the inverter is powered on. If this function is valid, the inverter will output for a short time at the moment of power-on.
2225
2226 (% class="table-bordered" %)
2227 |(% rowspan="2" %)**FA.08**|Fault auto reset times|Default|0
2228 |Setting range|(% colspan="2" %)0~~5
2229
2230 When the inverter selects automatic fault reset, it is used to set the number of times that can be reset automatically. If the value exceeds this value, the inverter will be on standby and waiting for repair.
2231
2232 (% class="table-bordered" %)
2233 |(% rowspan="2" %)**FA.09**|Relay action during fault auto reset|Default|0
2234 |Setting range|(% colspan="2" %)0:Disabled; 1:Enabled
2235
2236 After selecting the inverter fault automatic reset function, during the execution of the fault reset, through this parameter setting, you can decide whether the fault relay is required to act, so as to shield the fault alarm caused by this and make the equipment continue to run.
2237
2238 (% class="table-bordered" %)
2239 |(% rowspan="2" %)**FA.10**|(% colspan="2" %)Time interval of fault auto reset|Default|1.0s
2240 |Setting range|(% colspan="3" %)0.1s~~100.0s
2241
2242 The waiting time for the inverter from the fault alarm to the automatic reset of the fault.
2243
2244 (% class="table-bordered" %)
2245 |(% rowspan="2" %)**FA.11**|(% colspan="2" %)Input phase loss protection|Default|Model dependent
2246 |Setting range|(% colspan="3" %)(((
2247 0:Disabled
2248
2249 1:Enabled
2250 )))
2251
2252 Choose whether to protect the input phase loss.
2253
2254 (% class="table-bordered" %)
2255 |(% rowspan="2" %)**FA.12**|(% colspan="2" %)Output phase loss protection|Default|1
2256 |Setting range|(% colspan="3" %)(((
2257 0:Disabled
2258
2259 1:Enabled
2260 )))
2261
2262 Choose whether to protect the output phase loss.
2263
2264 (% class="table-bordered" %)
2265 |(% rowspan="9" %)**FA.13**|(% colspan="2" style="width:442px" %)Fault protection action selection 1|(% style="width:451px" %)Default|(% colspan="2" %)00000
2266 |(% rowspan="8" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Motor Overload(Err11)
2267 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2268 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2269 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Continue to run
2270 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Input Phase Loss(Err12) (0~~2,as ones place)
2271 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Output Phase Loss (Err13) (0~~2,as ones place)
2272 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)External Fault(Err15) (0~~2,as ones place)
2273 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Communication Fault(Err16) (0~~2,as ones place)
2274 |(% rowspan="11" %)**FA.14**|(% colspan="2" style="width:442px" %)Reserved|(% style="width:451px" %)Default|(% colspan="2" %)
2275 |(% rowspan="10" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)Reserved
2276 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2277 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2278 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Reserved
2279 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)Reserved
2280 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Reserved
2281 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Reserved
2282 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Reserved
2283 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2284 |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)Reserved
2285 |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2286 |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2287 |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2288 |(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2289 |(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2290 |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2291 |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2292 |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2293 | |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)(((
2294 PID feedback loss during
2295
2296 Running (Err31) (0~~2,as ones place of FA.13)
2297 )))
2298 |(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2299 Overcurrent stall Integral coefficient
2300 )))|(% colspan="2" style="width:451px" %)Default|500
2301 |(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2302
2303 set overcurrent stall Integral coefficient rate.
2304
2305 When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2306
2307 When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
2308
2309 When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2310
2311 (% class="table-bordered" %)
2312 |(% rowspan="2" %)(((
2313 FA.17
2314 )))|(((
2315 Undervoltage setting
2316 )))|(((
2317 Default
2318 )))|(((
2319 100.0%
2320 )))
2321 |(((
2322 Setting range
2323 )))|(% colspan="2" rowspan="1" %)(((
2324 60.0%~~140.0%
2325 )))
2326
2327 Instantaneous power failure mode selection
2328
2329 (% class="table-bordered" %)
2330 |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
2331 |Setting range|(% colspan="2" %)60.0%~~140.0%
2332
2333 Adjusting this parameter can adjust the voltage point at which the inverter reports undervoltage fault (Err09), and 100.0% corresponds to 350V.
2334
2335 (% class="table-bordered" %)
2336 |(% rowspan="2" %)**FA.19**|Overvoltage setting|Default|810.0V
2337 |Setting range|(% colspan="2" %)200.0V ~~ 2500.0V
2338
2339 Generally, this parameter is not adjusted after the inverter leaves the factory. If there is frequent overvoltage during operation, please consult the manufacturer's customer service department before making adjustments.
2340
2341 (% class="table-bordered" %)
2342 |(% rowspan="6" %)**FA.20**|(% colspan="2" %)Continue running frequency selection during failure|Default|0
2343 |(% rowspan="5" %)Setting range|0|(% colspan="2" %)Run with the current run frequency
2344 |1|(% colspan="2" %)Run with the setting frequency
2345 |2|(% colspan="2" %)Run with the upper limit frequency
2346 |3|(% colspan="2" %)Run with lower limit frequency.
2347 |4|(% colspan="2" %)(((
2348 Run with standby frequency when abnormal
2349
2350 (FA.21)
2351 )))
2352 |(% rowspan="2" %)**FA.21**|(% colspan="2" %)Abnormal standby frequency setting|Default|100.0%(Current set frequency)
2353 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%
2354
2355 When a fault occurs during the operation of the inverter and the fault handling method is keep running, the inverter prompts A~*~* and runs at the set frequency determined by this function.
2356
2357 (% class="table-bordered" %)
2358 |(% rowspan="4" %)**FA.22**|(% colspan="2" %)Action selection at instantaneous power failure|Default|0
2359 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Invalid
2360 |1|(% colspan="2" %)Stop as Deceleration time 1
2361 |2|(% colspan="2" %)Stop as Deceleration time 2
2362 |(% rowspan="2" %)**FA.23**|(% colspan="2" %)Action pause judging voltage at instantaneous power failure|Default|90.0%
2363 |(% colspan="2" %)Setting range|(% colspan="2" %)80.0%~~100.0%(Standard Bus Voltage)
2364 |(% rowspan="2" %)**FA.24**|(% colspan="2" %)Voltage rally judging time at instantaneous power failure|Default|0.50s
2365 |(% colspan="2" %)Setting range|(% colspan="2" %)0.00s~~100.00s
2366 |(% rowspan="2" %)**FA.25**|(% colspan="2" %)Action judging voltage at instantaneous power failure|Default|80.0%
2367 |(% colspan="2" %)Setting range|(% colspan="2" %)60.0%~~100.0%( Standard Bus Voltage)
2368
2369 This function means that the inverter will not stop when the power is cut instantaneously. In the case of an instantaneous power failure or a sudden voltage drop, the inverter will reduce its output speed, and compensate for the voltage drop by feeding back energy through the load to keep the inverter running in a short time.
2370
2371 If the instantaneous stop non-stop function selection is valid, when the bus voltage is lower than the voltage indicated by the instantaneous stop non-stop action judgment voltage (FA.25), the inverter will decelerate according to the instantaneous stop action selection. When the stop action judgment voltage (FA.25) represents the voltage, and the duration is maintained for the momentary stop and non-stop voltage rise judgment time (FA.24), the inverter resumes the set frequency operation; otherwise the inverter will continue to reduce the operating frequency to Stop at 0 o'clock. Instantaneous stop non-stop function if shown.
2372
2373 The deceleration time of instantaneous power failure is too long, the load feedback energy is small, and the low voltage can not be effectively compensated; the deceleration time is too short, the load feedback energy is large, which will cause overvoltage protection. Please adjust the deceleration time appropriately according to the load inertia and the weight of the load.
2374
2375 (% class="table-bordered" %)
2376 |(% rowspan="3" %)**FA.26**|(% colspan="2" %)Loss of loads protection options|Default|0
2377 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Disabled
2378 |1|(% colspan="2" %)Enabled
2379 |(% rowspan="2" %)**FA.27**|(% colspan="2" %)Loss of loads detection level|Default|10.0%
2380 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0%~~100.0%(Motor rated current)
2381 |(% rowspan="2" %)**FA.28**|(% colspan="2" %)Loss of loads detection time|Default|1.0s
2382 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s~~60.0s
2383
2384 If this function is valid, when the inverter loses load, the inverter reports Err30 fault, and the output frequency is 7% of the rated frequency; if the load is restored, it will run at the set frequency. The off-load detection level and detection time can be set.
2385
2386 (% class="table-bordered" %)
2387 |(% rowspan="6" %)**FA.29**|(% colspan="2" %)The decimal point of the frequency in failure state|Default|222
2388 |(% rowspan="5" %)Setting range|Ones Place|(% colspan="2" %)The third fault frequency decimal point
2389 |1|(% colspan="2" %)1 decimal point
2390 |2|(% colspan="2" %)2 decimal point
2391 |Tens Place|(% colspan="2" %)The second fault frequency decimal point (1~~2,as ones place)
2392 |Hundreds Place|(% colspan="2" %)The first fault frequency decimal point (1~~2,as ones place)
2393
2394 Since the frequency decimal point can be set, this function code is used to record the position of the decimal point of the frequency at the time of failure (for frequency display during failure).
2395
2396 Note: The function code display data is H.xxx, where H. means hexadecimal data.
2397
2398 = 12 FB group frequency swing, length fixing and counting =
2399
2400 The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2401
2402 Swing frequency function means that the output frequency of the inverter swings up and down around the set frequency (frequency command is selected by F0.07). The trajectory of the running frequency on the time axis is shown in the figure below, where the swing amplitude is determined by FB.00 and FB. 01 setting, when FB.01 is set to 0, that is, the swing amplitude is 0, and the swing frequency has no effect.
2403
2404 (% style="text-align:center" %)
2405 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_1c70827204f62468.png]]
2406
2407 Figure 6-12-1 Schematic diagram of swing frequency work
2408
2409 (% class="table-bordered" %)
2410 |(% rowspan="3" %)**FB.00**|(% colspan="2" %)Swing frequency setting mode|Default|0
2411 |(% rowspan="2" %)Setting range|0|(% colspan="2" %)Relative to the central frequency
2412 |1|(% colspan="2" %)Relative to the maximum frequency
2413
2414 Use this parameter to determine the reference amount of swing.
2415
2416 0: Relative to the center frequency (F0.07 frequency source selection), a variable swing amplitude system. The swing amplitude changes with the center frequency (set frequency).
2417
2418 1: Relative to the maximum frequency (F0.10 maximum output frequency), it is a fixed swing amplitude system.
2419
2420 (% class="table-bordered" %)
2421 |(% rowspan="2" %)**FB.01**|(% colspan="2" %)Swing frequency amplitude|Default|0.0%
2422 |Setting range|(% colspan="3" %)0.0%~~100.0%
2423 |(% rowspan="2" %)**FB.02**|(% colspan="2" %)Jump frequency amplitude|Default|0.0%
2424 |Setting range|(% colspan="3" %)0.0%~~50.0%
2425
2426 Use this parameter to determine the swing amplitude and kick frequency. The swing frequency operation frequency is restricted by the upper and lower limit frequencies.
2427
2428 The swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0): swing amplitude AW = frequency source F0.07 × swing amplitude FB.01.
2429
2430 The swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1): swing amplitude AW = maximum frequency F0.10× swing amplitude FB.01.
2431
2432 Kick frequency = swing amplitude AW × sudden jump frequency amplitude FB.02. That is, when the swing frequency is running, the value of the kick frequency relative to the swing amplitude.
2433
2434 If the swing amplitude is relative to the center frequency (variable swing amplitude, select FB.00=0), the kick frequency is the variable value.
2435
2436 If the swing amplitude is relative to the maximum frequency (fixed swing amplitude, select FB.00=1), the kick frequency is a fixed value.
2437
2438 (% class="table-bordered" %)
2439 |(% rowspan="2" %)**FB.03**|(% colspan="2" %)Swing frequency cycle|Default|10.0s
2440 |Setting range|(% colspan="3" %)0.0s~~3000.0s
2441 |(% rowspan="2" %)**FB.04**|(% colspan="2" %)Triangular wave rising time coefficient|Default|50.0%
2442 |Setting range|(% colspan="3" %)0.0%~~100.0%
2443
2444 Swing frequency cycle: the time value of a complete swing frequency cycle. FB.04 triangle wave rise time coefficient is relative to FB.03 swing frequency period.
2445
2446 Triangular wave rise time = swing frequency period FB.03 × triangular wave rise time coefficient FB.04 (unit: s)
2447
2448 Triangular wave falling time = swing frequency period FB.03 × (1-triangular wave rising time coefficient FB.04) (unit: s)
2449
2450 (% class="table-bordered" %)
2451 |(% rowspan="2" %)**FB.05**|Setting length|Default|1000m
2452 |Setting range|(% colspan="2" %)0m~~65535m
2453 |(% rowspan="2" %)**FB.06**|Actual length|Default|0m
2454 |Setting range|(% colspan="2" %)0m~~65535m
2455 |(% rowspan="2" %)**FB.07**|Number of pulses per meter|Default|100.0
2456 |Setting range|(% colspan="2" %)0.1~~6553.5
2457
2458 The three function codes of set length, actual length and number of pulses per m are mainly used for fixed length control. The length is calculated by the pulse signal input from the digital input terminal, and the corresponding input terminal needs to be set as the length counting input terminal. Generally, when the pulse frequency is high, DI5 input is required.
2459
2460 Actual length = length count input pulse number / pulse number per m
2461
2462 When the actual length FB.06 exceeds the set length FB.05, the multi-function digital output terminal "length reach terminal" will output ON signal (please refer to F1.04 function code)
2463
2464 (% class="table-bordered" %)
2465 |(% rowspan="2" %)**FB.08**|(% colspan="2" %)Set count value|Default|1000
2466 |Setting range|(% colspan="3" %)1~~65535
2467 |(% rowspan="2" %)**FB.09**|(% colspan="2" %)Designated count value|Default|1000
2468 |Setting range|(% colspan="3" %)1~~65535
2469
2470 The count value is counted by inputting the pulse signal from the counter input terminal in the multi-function switch input terminal.
2471
2472 When the count value reaches the set count value, the switch output terminal outputs a signal that the set count value has reached. The counter stops counting.
2473
2474 When the count value reaches the designated count value, the switch output terminal outputs a signal that the designated count value has reached. The counter continues to count and stops at the "set count value".
2475
2476 The designated count value FB.09 should not be greater than the set count value FB.08.
2477
2478 This function is as below:
2479
2480 (% style="text-align:center" %)
2481 [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_3afe609068e8ab4b.png]]
2482
2483 Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2484
2485 = 13 FC group communication parameters =
2486
2487 (% class="table-bordered" %)
2488 |(% rowspan="2" %)**FC.00**|Local address|Default|1
2489 |Setting range|(% colspan="2" %)00~~247
2490
2491 When the local address is set to 0, it is the broadcast address, which realizes the broadcast function of the host computer. The address of this machine is unique (except the broadcast address), which is the basis for the point-to-point communication between the host computer and the inverter.
2492
2493 (% class="table-bordered" %)
2494 |(% rowspan="9" %)**FC.01**|Baud Rate|(% colspan="2" %)Default|5
2495 |(% rowspan="8" %)Setting range|0|(% colspan="2" %)300 bps
2496 |1|(% colspan="2" %)600 bps
2497 |2|(% colspan="2" %)1200 bps
2498 |3|(% colspan="2" %)2400 bps
2499 |4|(% colspan="2" %)4800 bps
2500 |5|(% colspan="2" %)9600 bps
2501 |6|(% colspan="2" %)19200 bps
2502 |7|(% colspan="2" %)38400 bps
2503
2504 This parameter is used to set the data transmission rate between the host computer and the inverter. Note that the baud rate set by the host computer and the inverter must be consistent, otherwise, the communication cannot be carried out. The greater the baud rate, the faster the communication speed.
2505
2506 (% class="table-bordered" %)
2507 |(% rowspan="5" %)**FC.02**|Data format|Default|3
2508 |(% rowspan="4" %)Setting range|0|No check, data format <8,N,2>
2509 |1|Even parity check, data format <8,E,1>
2510 |2|Odd Parity check, data format <8,0,1>
2511 |3|No check, data format <8,N,1>
2512
2513 The data format set by the host computer and the inverter must be same, otherwise, the communication cannot be carried out.
2514
2515 (% class="table-bordered" %)
2516 |(% rowspan="2" %)**FC.03**|Response delay|Default|2ms
2517 |Setting range|(% colspan="2" %)0~~20ms
2518
2519 Response delay: refers to the intermediate time between the end of the inverter data receiving and the sending of data to the upper computer. If the response delay is less than the system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system will wait after processing the data until the response delay time expires before going to the upper computer. send data.
2520
2521 (% class="table-bordered" %)
2522 |(% rowspan="2" %)**FC.04**|Communication timeout|Default|0.0 s
2523 |Setting range|(% colspan="2" %)0.0 s(Invalid),0.1~~60.0s
2524
2525 When the function code is set to 0.0 s, the communication timeout time parameter is invalid.
2526
2527 When the function code is set to a valid value, if the interval between one communication and the next communication exceeds the communication timeout time, the system will report a communication failure error (Err16). Under normal circumstances, it is set to invalid. If you set the secondary parameters in a continuous communication system, you can monitor the communication status.
2528
2529 (% class="table-bordered" %)
2530 |(% rowspan="3" %)**FC.05**|Communication reading current resolution|Default|0
2531 |(% rowspan="2" %)Setting range|0|0.01A
2532 |1|0.1A
2533
2534 Used to determine the output unit of the current value when the communication reads the output current.
2535
2536 = 14 FD group muti-stage speed and simple plc functions =
2537
2538 The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2539
2540 (% class="table-bordered" %)
2541 |(% rowspan="2" %)**FD.00**|Multistage Speed0|Default|0.0%
2542 |Setting range|(% colspan="2" %)-100.0%~~100.0%; 100.0% for maximum frequency (F0.10)
2543 |(% rowspan="2" %)**FD.01**|Multistage Speed1|Default|0.0%
2544 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2545 |(% rowspan="2" %)**FD.02**|Multistage Speed2|Default|0.0%
2546 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2547 |(% rowspan="2" %)**FD.03**|Multistage Speed3|Default|0.0%
2548 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2549 |(% rowspan="2" %)**FD.04**|Multistage Speed4|Default|0.0%
2550 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2551 |(% rowspan="2" %)**FD.05**|Multistage Speed5|Default|0.0%
2552 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2553 |(% rowspan="2" %)**FD.06**|Multistage Speed6|Default|0.0%
2554 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2555 |(% rowspan="2" %)**FD.07**|Multistage Speed7|Default|0.0%
2556 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2557 |(% rowspan="2" %)**FD.08**|Multistage Speed8|Default|0.0%
2558 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2559 |(% rowspan="2" %)**FD.09**|Multistage Speed9|Default|0.0%
2560 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2561 |(% rowspan="2" %)**FD.10**|Multistage Speed10|Default|0.0Hz
2562 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2563 |(% rowspan="2" %)**FD.11**|Multistage Speed11|Default|0.0%
2564 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2565 |(% rowspan="2" %)**FD.12**|Multistage Speed12|Default|0.0%
2566 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2567 |(% rowspan="2" %)**FD.13**|Multistage Speed13|Default|0.0%
2568 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2569 |(% rowspan="2" %)**FD.14**|Multistage Speed14|Default|0.0%
2570 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2571 |(% rowspan="2" %)**FD.15**|Multistage Speed15|Default|0.0%
2572 |Setting range|(% colspan="2" %)-100.0%~~100.0%
2573
2574 When the frequency source parameters F0.07, F0.03, F0.04 are determined to be the PLC operation mode, you need to set FD.00 ~~ FD.15, FD.16, FD.17, FD.18 ~~ FD.49 to determine them. characteristic.
2575
2576 Note: The symbols of FD.00~~FD.15 determine the running direction of the simple PLC. If it is negative, it means running in the reverse direction.
2577
2578 Simple PLC schematic diagram:
2579
2580 (% class="table-bordered" %)
2581 |(% rowspan="4" %)**FD.16**|(% colspan="2" %)Simple PLC running mode|Default|0
2582 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)Stop after the AC Drive runs one cycle
2583 |1|(% colspan="2" %)Keep final values after the AC Drive runs one cycle(running frequency)
2584 |2|(% colspan="2" %)Repeat after the AC Drive runs one cycle
2585 |(% rowspan="7" %)**FD.17**|(% colspan="2" %)Simple PLC retentive selection|Default|00
2586 |(% rowspan="6" %)Setting range|Ones place|(% colspan="2" %)(Retentive upon power failure)
2587 |0|(% colspan="2" %)No
2588 |1|(% colspan="2" %)Yes
2589 |Tens place|(% colspan="2" %)(Retentive upon stop)
2590 |0|(% colspan="2" %)No
2591 |1|(% colspan="2" %)Yes
2592
2593 PLC operation mode
2594
2595 **0: Stop after the AC Drive runs one cycle**
2596
2597 After the inverter completes a single cycle, it stops automatically, and it needs to be given a run command again to start.
2598
2599 **1: Keep final values after the AC Drive runs one cycle(running frequency)**
2600
2601 After the inverter completes a single cycle, it automatically maintains the operating frequency and direction of the last segment.
2602
2603 **2: Repeat after the AC Drive runs one cycle**
2604
2605 After the inverter completes one cycle, it will automatically start the next cycle until the system stops when there is a stop command.
2606
2607 **3: Retentive upon power failure**
2608
2609 PLC power-down memory refers to memorizing the operation stage and frequency of PLC before power-off.
2610
2611 **4: Retentive upon stop**
2612
2613 PLC stop memory is to record the previous PLC running stage and running frequency when stopping.
2614
2615 (% class="table-bordered" %)
2616 |(% rowspan="2" %)**FD.18**|(% colspan="2" %)Running time of simple PLC reference 0|Default|0.0s(h)
2617 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2618 |(% rowspan="2" %)**FD.19**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 0|Default|0
2619 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2620 |(% rowspan="2" %)**FD.20**|(% colspan="2" %)Running time of simple PLC reference 1|Default|0.0s(h)
2621 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2622 |(% rowspan="2" %)**FD.21**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 1|Default|0
2623 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2624 |(% rowspan="2" %)**FD.22**|(% colspan="2" %)Running time of simple PLC reference 2|Default|0.0s(h)
2625 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2626 |(% rowspan="2" %)**FD.23**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 2|Default|0
2627 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2628 |(% rowspan="2" %)**FD.24**|(% colspan="2" %)Running time of simple PLC reference 3|Default|0.0s(h)
2629 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2630 |(% rowspan="2" %)**FD.25**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 3|Default|0
2631 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2632 |(% rowspan="2" %)**FD.26**|(% colspan="2" %)Running time of simple PLC reference 4|Default|0.0s(h)
2633 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2634 |(% rowspan="2" %)**FD.27**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 4|Default|0
2635 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2636 |(% rowspan="2" %)**FD.28**|(% colspan="2" %)Running time of simple PLC reference 5|Default|0.0s(h)
2637 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2638 |(% rowspan="2" %)**FD.29**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 5|Default|0
2639 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2640 |(% rowspan="2" %)**FD.30**|(% colspan="2" %)Running time of simple PLC reference 6|Default|0.0s(h)
2641 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2642 |(% rowspan="2" %)**FD.31**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 6|Default|0
2643 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2644 |(% rowspan="2" %)**FD.32**|(% colspan="2" %)Running time of simple PLC reference 7|Default|0.0s(h)
2645 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2646 |(% rowspan="2" %)**FD.33**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 7|Default|0
2647 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2648 |(% rowspan="2" %)**FD.34**|(% colspan="2" %)Running time of simple PLC reference 8|Default|0.0s(h)
2649 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2650 |(% rowspan="2" %)**FD.35**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 8|Default|0
2651 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2652 |(% rowspan="2" %)**FD.36**|(% colspan="2" %)Running time of simple PLC reference 9|Default|0.0s(h)
2653 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2654 |(% rowspan="2" %)**FD.37**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 9|Default|0
2655 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2656 |(% rowspan="2" %)**FD.38**|(% colspan="2" %)Running time of simple PLC reference 10|Default|0.0s(h)
2657 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0 s(h)~~6553.5s(h)
2658 |(% rowspan="2" %)**FD.39**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 10|Default|0
2659 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2660 |(% rowspan="2" %)**FD.40**|(% colspan="2" %)Running time of simple PLC reference 11|Default|0.0s(h)
2661 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2662 |(% rowspan="2" %)**FD.41**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 11|Default|0
2663 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2664 |(% rowspan="2" %)**FD.42**|(% colspan="2" %)Running time of simple PLC reference 12|Default|0.0s(h)
2665 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2666 |(% rowspan="2" %)**FD.43**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 12|Default|0
2667 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2668 |(% rowspan="2" %)**FD.44**|(% colspan="2" %)Running time of simple PLC reference 13|Default|0.0s(h)
2669 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2670 |(% rowspan="2" %)**FD.45**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 13|Default|0
2671 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2672 |(% rowspan="2" %)**FD.46**|(% colspan="2" %)Running time of simple PLC reference 14|Default|0.0s(h)
2673 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2674 |(% rowspan="2" %)**FD.47**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 14|Default|0
2675 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2676 |(% rowspan="2" %)**FD.48**|(% colspan="2" %)Running time of simple PLC reference 15|Default|0.0s(h)
2677 |(% colspan="2" %)Setting range|(% colspan="2" %)0.0s(h)~~6553.5s(h)
2678 |(% rowspan="2" %)**FD.49**|(% colspan="2" %)Acceleration/deceleration time of simple PLC reference 15|Default|0
2679 |(% colspan="2" %)Setting range|(% colspan="2" %)0~~3
2680 |(% rowspan="4" %)**FD.50**|(% colspan="2" %)Time unit of simple PLC running|Default|0
2681 |(% rowspan="3" %)Setting range|0|(% colspan="2" %)s:second
2682 |1|(% colspan="2" %)h:hour
2683 |2|(% colspan="2" %)min:minute
2684 |(% rowspan="8" %)**FD.51**|(% colspan="2" %)The source of multistage speed 0|Default|0
2685 |(% rowspan="7" %)Setting range|0|(% colspan="2" %)Set by FD.00
2686 |1|(% colspan="2" %)AI1
2687 |2|(% colspan="2" %)AI2
2688 |3|(% colspan="2" %)Reserved
2689 |4|(% colspan="2" %)Reserved
2690 |5|(% colspan="2" %)PID
2691 |6|(% colspan="2" %)Set by preset frequency (F0.08)
2692
2693 This parameter determines the target quantity given channel of multi-speed 0.
2694
2695 = 15 FE group user password management =
2696
2697 (% class="table-bordered" %)
2698 |(% rowspan="2" %)**FE.00**|User password|Default|0
2699 |Setting range|(% colspan="2" %)0~~65535
2700
2701 Set to any non-zero number, the password protection function will take effect.
2702
2703 00000: Clear the previously set user password value and disable the password protection function.
2704
2705 When the user password is set and effective, when entering the parameter setting state again, if the user password is incorrect, you can only view the parameters, but
2706
2707 cannot modify the parameters. Please keep in mind the user password. If you accidentally set it by mistake or forget it, please contact the manufacturer.
2708
2709 (% class="table-bordered" %)
2710 |(% rowspan="2" %)**FE.01**|Fault record display times|Default|5
2711 |Setting range|(% colspan="2" %)0~~15
2712
2713 This function code is used to set the number of displaying fault records.